Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Compr Psychoneuroendocrinol ; 10: 100116, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35774109

RESUMEN

Identification of putative biomarkers for neuropsychiatric disorders has produced a diverse list of analytes involved in inflammation, hypothalamic-pituitary-adrenal axis (HPA) regulation, growth factor and metabolic pathways. However, translation of these findings to accurate and robust assays has been stalled, affecting objective diagnoses, tracking relapse/remission, and prediction/monitoring of drug affect. Two important factors to control are the sample matrix (e.g. serum, plasma, saliva, or cerebrospinal fluid) and time of sample collection. Additionally, sample collection procedures may affect analyte level. In this study, a panel of 14 core neuropsychiatric biomarkers was measured in serum, plasma, saliva, and cerebrospinal fluid (CSF), all collected from 8 healthy volunteers at the same time. In a second cohort of 7 healthy volunteers, 6 analytes were measured in serum and CSF collected at 13 timepoints over a 24-h period after catheter placement. We found that many of the analytes were quantifiable in all sample types examined, but often at quite different concentrations and without correlation between the sample types. After catheter placement, a diurnal pattern was observed for cortisol and interleukin-6 in serum, and transient spikes were observed in interleukin-1ß. In CSF, a chronic elevation of several cytokines was observed instead, perhaps due to the continuous sampling procedure. These findings enable more informed decision-making around sample type and collection time, which can be implemented in future biomarker studies. Clinicaltrialgov identifiers: NCT02933762, NCT02475148.

2.
Transl Psychiatry ; 10(1): 308, 2020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32895369

RESUMEN

Orexin neurons originating in the perifornical and lateral hypothalamic area project to anxiety- and panic-associated neural circuitry, and are highly reactive to anxiogenic stimuli. Preclinical evidence suggests that the orexin system, and particularly the orexin-1 receptor (OX1R), may be involved in the pathophysiology of panic and anxiety. Selective OX1R antagonists thus may constitute a potential new treatment strategy for panic- and anxiety-related disorders. Here, we characterized a novel selective OX1R antagonist, JNJ-61393215, and determined its affinity and potency for human and rat OX1R in vitro. We also evaluated the safety, pharmacokinetic, and pharmacodynamic properties of JNJ-61393215 in first-in-human single- and multiple-ascending dose studies conducted. Finally, the potential anxiolytic effects of JNJ-61393215 were evaluated both in rats and in healthy men using 35% CO2 inhalation challenge to induce panic symptoms. In the rat CO2 model of panic anxiety, JNJ-61393215 demonstrated dose-dependent attenuation of CO2-induced panic-like behavior without altering baseline locomotor or autonomic activity, and had minimal effect on spontaneous sleep. In phase-1 human studies, JNJ-61393215 at 90 mg demonstrated significant reduction (P < 0.02) in CO2-induced fear and anxiety symptoms that were comparable to those obtained using alprazolam. The most frequently reported adverse events were somnolence and headache, and all events were mild in severity. These results support the safety, tolerability, and anxiolytic effects of JNJ-61393215, and validate CO2 exposure as a translational cross-species experimental model to evaluate the therapeutic potential of novel anxiolytic drugs.


Asunto(s)
Antagonistas de los Receptores de Orexina , Pánico , Roedores , Animales , Humanos , Modelos Teóricos , Receptores de Orexina , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...