Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 91(5): 053201, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32486754

RESUMEN

We have developed a trapped ion system for producing two-dimensional (2D) ion crystals for applications in scalable quantum computing, quantum simulations, and 2D crystal phase transition and defect studies. The trap is a modification of a Paul trap with its ring electrode flattened and split into eight identical sectors and its two endcap electrodes shaped as truncated hollow cones for laser and imaging optics access. All ten trap electrodes can be independently DC-biased to create various aspect ratio trap geometries. We trap and Doppler cool 2D crystals of up to 30 Ba+ ions and demonstrate the tunability of the trapping potential both in the plane of the crystal and in the transverse direction.

2.
Phys Rev Lett ; 93(9): 090410, 2004 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-15447086

RESUMEN

We report the measurement of a Bell inequality violation with a single atom and a single photon prepared in a probabilistic entangled state. This is the first demonstration of such a violation with particles of different species. The entanglement characterization of this hybrid system may also be useful in quantum information applications.

3.
Nature ; 428(6979): 153-7, 2004 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-15014494

RESUMEN

An outstanding goal in quantum information science is the faithful mapping of quantum information between a stable quantum memory and a reliable quantum communication channel. This would allow, for example, quantum communication over remote distances, quantum teleportation of matter and distributed quantum computing over a 'quantum internet'. Because quantum states cannot in general be copied, quantum information can only be distributed in these and other applications by entangling the quantum memory with the communication channel. Here we report quantum entanglement between an ideal quantum memory--represented by a single trapped 111Cd+ ion--and an ideal quantum communication channel, provided by a single photon that is emitted spontaneously from the ion. Appropriate coincidence measurements between the quantum states of the photon polarization and the trapped ion memory are used to verify their entanglement directly. Our direct observation of entanglement between stationary and 'flying' qubits is accomplished without using cavity quantum electrodynamic techniques or prepared non-classical light sources. We envision that this source of entanglement may be used for a variety of quantum communication protocols and for seeding large-scale entangled states of trapped ion qubits for scalable quantum computing.

4.
Opt Lett ; 28(17): 1582-4, 2003 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-12956386

RESUMEN

We report new techniques for driving high-fidelity stimulated Raman transitions in trapped-ion qubits. An electro-optic modulator induces sidebands on an optical source, and interference between the sidebands allows coherent Rabi transitions to be efficiently driven between hyperfine ground states separated by 14.53 GHz in a single trapped 111Cd+ ion.

5.
Phys Rev Lett ; 88(1): 014801, 2002 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-11800956

RESUMEN

We recently studied the spin-flipping efficiency of an rf-dipole magnet using a 120-MeV horizontally polarized proton beam stored in the Indiana University Cyclotron Facility Cooler Ring, which contained a nearly full Siberian snake. We flipped the spin by ramping the rf dipole's frequency through an rf-induced depolarizing resonance. By adiabatically turning on the rf dipole, we minimized the beam loss. After optimizing the frequency ramp parameters, we used 100 multiple spin flips to measure a spin-flip efficiency of 99.63+/-0.05%. This result indicates that spin flipping should be possible in very-high-energy polarized storage rings, where Siberian snakes are certainly needed and only dipole rf-flipper magnets are practical.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA