Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(5): 054003, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38364154

RESUMEN

Topological wave structures-phase vortices, skyrmions, merons, etc.-are attracting enormous attention in a variety of quantum and classical wave fields. Surprisingly, these structures have never been properly explored in the most obvious example of classical waves: water-surface (gravity-capillary) waves. Here, we fill this gap and describe (i) water-wave vortices of different orders carrying quantized angular momentum with orbital and spin contributions, (ii) skyrmion lattices formed by the instantaneous displacements of the water-surface particles in wave interference, and (iii) meron (half-skyrmion) lattices formed by the spin-density vectors, as well as (iv) spatiotemporal water-wave vortices and skyrmions. We show that all these topological entities can be readily generated in linear water-wave interference experiments. Our findings can find applications in microfluidics and show that water waves can be employed as an attainable playground for emulating universal topological wave phenomena.

2.
Phys Rev Lett ; 131(13): 136102, 2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37831989

RESUMEN

Transverse spin of surface waves is a universal phenomenon which has recently attracted significant attention in optics and acoustics. It appears in gravity water waves, surface plasmon polaritons, surface acoustic waves, and exhibits remarkable intrinsic spin-momentum locking, which has found useful applications for efficient spin-direction couplers. Here we demonstrate, both theoretically and experimentally, that the transverse spin of surface elastic (Rayleigh) waves has an anomalous sign near the surface, opposite to that in the case of electromagnetic, sound, or water surface waves. This anomalous sign appears due to the hybrid (neither transverse nor longitudinal) nature of elastic surface waves. Furthermore, we show that this sign anomaly can be employed for the selective spin-controlled excitation of symmetric and antisymmetric Lamb modes propagating in opposite directions in an elastic plate. Our results pave the way for spin-controlled manipulation of elastic waves and can be important for a variety of areas, from phononic spin-based devices to seismic waves.

3.
Nat Commun ; 14(1): 6238, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37803024

RESUMEN

Vortices in fluids and gases have piqued the human interest for centuries. Development of classical-wave physics and quantum mechanics highlighted wave vortices characterized by phase singularities and topological charges. In particular, vortex beams have found numerous applications in modern optics and other areas. Recently, optical spatiotemporal vortex states exhibiting the phase singularity both in space and time have been described. Here, we report the topologically robust generation of acoustic spatiotemporal vortex pulses. We utilize an acoustic meta-grating with broken mirror symmetry which exhibits a topological phase transition with a pair of phase singularities with opposite topological charges emerging in the momentum-frequency domain. We show that these vortices are topologically robust against structural perturbations of the meta-grating and can be employed for the generation of spatiotemporal vortex pulses. Our work paves the way for studies and applications of spatiotemporal structured waves in acoustics and other wave systems.

4.
Phys Rev Lett ; 129(20): 204301, 2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36461995

RESUMEN

Polarization singularities and topological polarization structures are generic features of inhomogeneous vector wave fields of any nature. However, their experimental studies mostly remain restricted to optical waves. Here, we report the observation of polarization singularities, topological Möbius-strip structures, and skyrmionic textures in 3D polarization fields of inhomogeneous sound waves. Our experiments are made in the ultrasonic domain using nonparaxial propagating fields generated by space-variant 2D acoustic sources. We also retrieve distributions of the 3D spin density in these fields. Our results open the avenue to investigations and applications of topological features and nontrivial 3D vector properties of structured sound waves.

5.
Phys Rev Lett ; 129(20): 204303, 2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36462016

RESUMEN

Motivated by recent theoretical and experimental interest in the spin and orbital angular momenta of elastic waves, we revisit canonical wave momentum, spin, and orbital angular momentum in isotropic elastic media. We show that these quantities are described by simple universal expressions, which differ from the results of Chaplain et al. [Phys. Rev. Lett. 128, 064301 (2022)PRLTAO0031-900710.1103/PhysRevLett.128.064301] and do not require separation of the longitudinal and transverse parts of the wave field. For cylindrical elastic modes, the normalized z component of the total (spin+orbital) angular momentum is quantized and equals the azimuthal quantum number of the mode, while the orbital and spin parts are not quantized due to the spin-orbit geometric-phase effects. In contrast to the claims of the above article, longitudinal, transverse, and "hybrid" contributions to the angular momenta are equally important in general and cannot be neglected. As another example, we calculate the transverse spin angular momentum of a surface Rayleigh wave.

6.
Phys Rev E ; 105(6-2): 065208, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35854583

RESUMEN

We examine the momentum and angular momentum (including spin) properties of linear waves, both longitudinal (Langmuir) and transverse (electromagnetic), in an isotropic nonrelativistic collisionless electron plasma. We focus on conserved quantities associated with the translational and rotational invariance of the wave fields with respect to the homogeneous medium; these are sometimes called pseudomomenta. There are two types of the momentum and angular momentum densities: (i) the kinetic ones associated with the energy flux density and the symmetrized (Belinfante) energy-momentum tensor and (ii) the canonical ones associated with the conserved Noether currents and canonical energy-momentum tensor. We find that the canonical momentum and spin densities of Langmuir waves are similar to those of sound waves in fluids or gases; they are naturally expressed via the electron velocity field. In turn, the momentum and spin densities of electromagnetic waves can be written either in the forms known for free-space electromagnetic fields, involving only the electric field, or in the dual-symmetric forms involving both electric and magnetic fields, as well as the effective permittivity of plasma. We derive these properties both within the phenomenological macroscopic approach and microscopic Lagrangian field theory for the coupled electromagnetic fields and electrons. Finally, we explore implications of the canonical momentum and spin densities in transport and electrodynamic phenomena: the Stokes drift, the wave-induced magnetization (inverse Faraday effect), etc.

7.
Sci Adv ; 8(3): eabm1295, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35061526

RESUMEN

Spin is a fundamental yet nontrivial intrinsic angular momentum property of quantum particles or fields, which appears within relativistic field theory. The spin density in wave fields is described by the theoretical Belinfante-Rosenfeld construction based on the difference between the canonical and kinetic momentum densities. These quantities are usually considered as abstract and non-observable per se. Here, we demonstrate, both theoretically and experimentally, that the Belinfante-Rosenfeld construction naturally arises in gravity (water surface) waves. There, the canonical momentum is associated with the generalized Stokes drift phenomenon, while the spin is generated by subwavelength circular motion of water particles. Thus, we directly observe these fundamental field theory properties as microscopic mechanical properties of a classical wave system. Our findings shed light onto the nature of spin and momentum in wave fields, demonstrate the universality of relativistic field theory concepts, and offer a new platform for their studies.

8.
Phys Rev Lett ; 126(24): 243601, 2021 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-34213941

RESUMEN

Recently, spatiotemporal optical vortex pulses carrying a purely transverse intrinsic orbital angular momentum were generated experimentally [Optica 6, 1547 (2019)OPTIC82334-253610.1364/OPTICA.6.001547; Nat. Photonics 14, 350 (2020)NPAHBY1749-488510.1038/s41566-020-0587-z]. However, an accurate theoretical analysis of such states and their angular-momentum properties remains elusive. Here, we provide such analysis, including scalar and vector spatiotemporal Bessel-type solutions as well as description of their propagational, polarization, and angular-momentum properties. Most importantly, we calculate both local densities and integral values of the spin and orbital angular momenta, and predict observable spin-orbit interaction phenomena related to the coupling between the transverse spin and orbital angular momentum. Our analysis is readily extended to spatiotemporal vortex pulses of other natures (e.g., acoustic).

9.
Sci Adv ; 7(16)2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33863718

RESUMEN

Angular momentum of spinning bodies leads to their remarkable interactions with fields, waves, fluids, and solids. Orbiting celestial bodies, balls in sports, liquid droplets above a hot plate, nanoparticles in optical fields, and spinning quantum particles exhibit nontrivial rotational dynamics. Here, we report self-guided propulsion of magnetic fast-spinning particles on a liquid surface in the presence of a solid boundary. Above some critical spinning frequency, such particles generate localized 3D vortices and form composite "spinner-vortex" quasiparticles with nontrivial, yet robust dynamics. Such spinner-vortices are attracted and dynamically trapped near the boundaries, propagating along the wall of any shape similarly to "liquid wheels." The propulsion velocity and the distance to the wall are controlled by the angular velocity of the spinner via the balance between the Magnus and wall repulsion forces. Our results offer a new type of surface vehicles and provide a powerful tool to manipulate spinning objects in fluids.

10.
Rep Prog Phys ; 82(12): 122401, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31514179

RESUMEN

Geometric phases are a universal concept that underpins numerous phenomena involving multi-component wave fields. These polarization-dependent phases are inherent in interference effects, spin-orbit interaction phenomena, and topological properties of vector wave fields. Geometric phases have been thoroughly studied in two-component fields, such as two-level quantum systems or paraxial optical waves. However, their description for fields with three or more components, such as generic nonparaxial optical fields routinely used in modern nano-optics, constitutes a nontrivial problem. Here we describe geometric, dynamical, and total phases calculated along a closed spatial contour in a multi-component complex field, with particular emphasis on 2D (paraxial) and 3D (nonparaxial) optical fields. We present several equivalent approaches: (i) an algebraic formalism, universal for any multi-component field; (ii) a dynamical approach using the Coriolis coupling between the spin angular momentum and reference-frame rotations; and (iii) a geometric representation, which unifies the Pancharatnam-Berry phase for the 2D polarization on the Poincaré sphere and the Majorana-sphere representation for the 3D polarized fields. Most importantly, we reveal close connections between geometric phases, angular-momentum properties of the field, and topological properties of polarization singularities in 2D and 3D fields, such as C-points and polarization Möbius strips.

11.
Phys Rev Lett ; 123(5): 054301, 2019 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-31491306

RESUMEN

Recently, it was shown that surface electromagnetic waves at interfaces between continuous homogeneous media (e.g., surface plasmon-polaritons at metal-dielectric interfaces) have a topological origin [K. Y. Bliokh et al., Nat. Commun. 10, 580 (2019)NCAOBW2041-172310.1038/s41467-019-08397-6]. This is explained by the nontrivial topology of the non-Hermitian photon helicity operator in the Weyl-like representation of Maxwell equations. Here we analyze another type of classical waves: longitudinal acoustic waves corresponding to spinless phonons. We show that surface acoustic waves, which appear at interfaces between media with opposite-sign densities, can be explained by similar topological features and the bulk-boundary correspondence. However, in contrast to photons, the topological properties of sound waves originate from the non-Hermitian four-momentum operator in the Klein-Gordon representation of acoustic fields.

12.
Nat Commun ; 10(1): 580, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30718477

RESUMEN

Maxwell electromagnetism, describing the wave properties of light, was formulated 150 years ago. More than 60 years ago it was shown that interfaces between optical media (including dielectrics, metals, negative-index materials) can support surface electromagnetic waves, which now play crucial roles in plasmonics, metamaterials, and nano-photonics. Here we show that surface Maxwell waves at interfaces between homogeneous isotropic media described by real permittivities and permeabilities have a topological origin explained by the bulk-boundary correspondence. Importantly, the topological classification is determined by the helicity operator, which is generically non-Hermitian even in lossless optical media. The corresponding topological invariant, which determines the number of surface modes, is a [Formula: see text] number (or a pair of [Formula: see text] numbers) describing the winding of the complex helicity spectrum across the interface. Our theory provides a new twist and insights for several areas of wave physics: Maxwell electromagnetism, topological quantum states, non-Hermitian wave physics, and metamaterials.

13.
Phys Rev Lett ; 119(7): 073901, 2017 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-28949675

RESUMEN

We examine the momentum, spin, and orbital angular momentum of structured monochromatic optical fields in dispersive inhomogeneous isotropic media. There are two bifurcations in this general problem: the Abraham-Minkowski dilemma and the kinetic (Poynting-like) versus canonical (spin-orbital) pictures. We show that the kinetic Abraham momentum describes the energy flux and group velocity of the wave in the medium. At the same time, we introduce novel canonical Minkowski-type momentum, spin, and orbital angular momentum densities of the field. These quantities exhibit fairly natural forms, analogous to the Brillouin energy density, as well as multiple advantages as compared with previously considered formalisms. As an example, we apply this general theory to inhomogeneous surface plasmon-polariton (SPP) waves at a metal-vacuum interface and show that SPPs carry a "supermomentum," proportional to the wave vector k_{p}>ω/c, and a transverse spin, which can change its sign depending on the frequency ω.

14.
Phys Rev Lett ; 118(4): 040401, 2017 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-28186785

RESUMEN

We analyze chiral topological edge modes in a non-Hermitian variant of the 2D Dirac equation. Such modes appear at interfaces between media with different "masses" and/or signs of the "non-Hermitian charge." The existence of these edge modes is intimately related to exceptional points of the bulk Hamiltonians, i.e., degeneracies in the bulk spectra of the media. We find that the topological edge modes can be divided into three families ("Hermitian-like," "non-Hermitian," and "mixed"); these are characterized by two winding numbers, describing two distinct kinds of half-integer charges carried by the exceptional points. We show that all the above types of topological edge modes can be realized in honeycomb lattices of ring resonators with asymmetric or gain-loss couplings.

15.
Science ; 348(6242): 1448-51, 2015 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-26113717

RESUMEN

Maxwell's equations, formulated 150 years ago, ultimately describe properties of light, from classical electromagnetism to quantum and relativistic aspects. The latter ones result in remarkable geometric and topological phenomena related to the spin-1 massless nature of photons. By analyzing fundamental spin properties of Maxwell waves, we show that free-space light exhibits an intrinsic quantum spin Hall effect­surface modes with strong spin-momentum locking. These modes are evanescent waves that form, for example, surface plasmon-polaritons at vacuum-metal interfaces. Our findings illuminate the unusual transverse spin in evanescent waves and explain recent experiments that have demonstrated the transverse spin-direction locking in the excitation of surface optical modes. This deepens our understanding of Maxwell's theory, reveals analogies with topological insulators for electrons, and offers applications for robust spin-directional optical interfaces.

16.
Phys Rev Lett ; 113(3): 033601, 2014 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-25083644

RESUMEN

We study the generic dipole interaction of a monochromatic free-space electromagnetic field with a bi-isotropic nanoparticle or a molecule. Contributions associated with the breaking of dual, P, and T symmetries are responsible for electric-magnetic asymmetry, chirality, and the nonreciprocal magnetoelectric effect, respectively. We calculate absorption rates, radiation forces, and radiation torques for the nanoparticle and introduce novel field characteristics quantifying the transfer of energy, momentum, and angular momentum due to the three symmetry-breaking effects. In particular, we put forward a concept of "magnetoelectric energy density," quantifying the local PT symmetry of the field. Akin to the "superchiral" light suggested recently for local probing of molecular chirality, here we suggest employing complex fields for a sensitive probing of the nonreciprocal magnetoelectric effect in nanoparticles or molecules.

17.
Phys Rev Lett ; 112(11): 110407, 2014 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-24702338

RESUMEN

By generalizing the quantum weak measurement protocol to the case of quantum fields, we show that weak measurements probe an effective classical background field that describes the average field configuration in the spacetime region between pre- and postselection boundary conditions. The classical field is itself a weak value of the corresponding quantum field operator and satisfies equations of motion that extremize an effective action. Weak measurements perturb this effective action, producing measurable changes to the classical field dynamics. As such, weakly measured effects always correspond to an effective classical field. This general result explains why these effects appear to be robust for pre- and postselected ensembles, and why they can also be measured using classical field techniques that are not weak for individual excitations of the field.

18.
Nat Commun ; 5: 3300, 2014 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-24598730

RESUMEN

Momentum and spin represent fundamental dynamic properties of quantum particles and fields. In particular, propagating optical waves (photons) carry momentum and longitudinal spin determined by the wave vector and circular polarization, respectively. Here we show that exactly the opposite can be the case for evanescent optical waves. A single evanescent wave possesses a spin component, which is independent of the polarization and is orthogonal to the wave vector. Furthermore, such a wave carries a momentum component, which is determined by the circular polarization and is also orthogonal to the wave vector. We show that these extraordinary properties reveal a fundamental Belinfante's spin momentum, known in field theory and unobservable in propagating fields. We demonstrate that the transverse momentum and spin push and twist a probe Mie particle in an evanescent field. This allows the observation of 'impossible' properties of light and of a fundamental field-theory quantity, which was previously considered as 'virtual'.


Asunto(s)
Algoritmos , Campos Electromagnéticos , Modelos Teóricos , Fotones , Simulación por Computador , Cinética
19.
Opt Express ; 21(6): 7082-95, 2013 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-23546090

RESUMEN

Mie theory is one of the main tools describing scattering of propagating electromagnetic waves by spherical particles. Evanescent optical fields are also scattered by particles and exert radiation forces which can be used for optical near-field manipulations. We show that the Mie theory can be naturally adopted for the scattering of evanescent waves via rotation of its standard solutions by a complex angle. This offers a simple and powerful tool for calculations of the scattered fields and radiation forces. Comparison with other, more cumbersome, approaches shows perfect agreement, thereby validating our theory. As examples of its application, we calculate angular distributions of the scattered far-field irradiance and radiation forces acting on dielectric and conducting particles immersed in an evanescent field.


Asunto(s)
Luz , Modelos Teóricos , Dispersión de Radiación , Resonancia por Plasmón de Superficie/métodos , Simulación por Computador
20.
Phys Rev Lett ; 110(9): 093601, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23496708

RESUMEN

Electron vortex beams carrying intrinsic orbital angular momentum (OAM) are produced in electron microscopes where they are controlled and focused by using magnetic lenses. We observe various rotational phenomena arising from the interaction between the OAM and magnetic lenses. First, the Zeeman coupling, proportional to the OAM and magnetic field strength, produces an OAM-independent Larmor rotation of a mode superposition inside the lens. Second, when passing through the focal plane, the electron beam acquires an additional Gouy phase dependent on the absolute value of the OAM. This brings about the Gouy rotation of the superposition image proportional to the sign of the OAM. A combination of the Larmor and Gouy effects can result in the addition (or subtraction) of rotations, depending on the OAM sign. This behavior is unique to electron vortex beams and has no optical counterpart, as Larmor rotation occurs only for charged particles. Our experimental results are in agreement with recent theoretical predictions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...