Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Cell Rep ; 42(4): 112353, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37043353

RESUMEN

Stem cell therapy shows promise for multiple disorders; however, the molecular crosstalk between grafted cells and host tissue is largely unknown. Here, we take a step toward addressing this question. Using translating ribosome affinity purification (TRAP) with sequencing tools, we simultaneously decode the transcriptomes of graft and host for human neural stem cells (hNSCs) transplanted into the stroke-injured rat brain. Employing pathway analysis tools, we investigate the interactions between the two transcriptomes to predict molecular pathways linking host and graft genes; as proof of concept, we predict host-secreted factors that signal to the graft and the downstream molecular cascades they trigger in the graft. We identify a potential host-graft crosstalk pathway where BMP6 from the stroke-injured brain induces graft secretion of noggin, a known brain repair factor. Decoding the molecular interplay between graft and host is a critical step toward deciphering the molecular mechanisms of stem cell action.


Asunto(s)
Células-Madre Neurales , Accidente Cerebrovascular , Ratas , Animales , Humanos , Encéfalo , Accidente Cerebrovascular/terapia , Trasplante de Células Madre , Diferenciación Celular
3.
Front Neurol ; 11: 236, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32318016

RESUMEN

Stroke is one of the major causes of chronic disability worldwide and increasing efforts have focused on studying brain repair and recovery after stroke. Following stroke, the primary injury site can disrupt functional connections in nearby and remotely connected brain regions, resulting in the development of secondary injuries that may impede long-term functional recovery. In particular, secondary degenerative injury occurs in the connected ipsilesional thalamus following a cortical stroke. Although secondary thalamic injury was first described decades ago, the underlying mechanisms still remain unclear. We performed a systematic literature review using the NCBI PubMed database for studies that focused on the secondary thalamic degeneration after cortical ischemic stroke. In this review, we discussed emerging studies that characterized the pathological changes in the secondary degenerative thalamus after stroke; these included excitotoxicity, apoptosis, amyloid beta protein accumulation, blood-brain-barrier breakdown, and inflammatory responses. In particular, we highlighted key findings of the dynamic inflammatory responses in the secondary thalamic injury and discussed the involvement of several cell types in this process. We also discussed studies that investigated the effects of blocking secondary thalamic injury on inflammatory responses and stroke outcome. Targeting secondary injuries after stroke may alleviate network-wide deficits, and ultimately promote stroke recovery.

4.
Front Cell Neurosci ; 13: 126, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31001088

RESUMEN

Stroke is the leading cause of adult disability in the United States. Because post-stroke inflammation is a critical determinant of damage and recovery after stroke, understanding the interplay between the immune system and the brain after stroke holds much promise for therapeutic intervention. An understudied, but important aspect of this interplay is the role of meninges that surround the brain. All blood vessels travel through the meningeal space before entering the brain parenchyma, making the meninges ideally located to act as an immune gatekeeper for the underlying parenchyma. Emerging evidence suggests that the actions of immune cells resident in the meninges are essential for executing this gatekeeper function. Mast cells (MCs), best known as proinflammatory effector cells, are one of the long-term resident immune cells in the meninges. Here, we discuss recent findings in the literature regarding the role of MCs located in the meningeal space and stroke pathology. We review the latest advances in mouse models to investigate the roles of MCs and MC-derived products in vivo, and the importance of using these mouse models. We examine the concept of the meninges playing a critical role in brain and immune interactions, reevaluate the perspectives on the key effectors of stroke pathology, and discuss the opportunities and challenges for therapeutic development.

5.
Biomaterials ; 178: 63-72, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29909038

RESUMEN

Currently, no medical therapies exist to augment stroke recovery. Stem cells are an intriguing treatment option being evaluated, but cell-based therapies have several challenges including developing a stable cell product with long term reproducibility. Since much of the improvement observed from cellular therapeutics is believed to result from trophic factors the stem cells release over time, biomaterials are well-positioned to deliver these important molecules in a similar fashion. Here we show that essential trophic factors secreted from stem cells can be effectively released from a multi-component hydrogel system into the post-stroke environment. Using our polymeric system to deliver VEGF-A and MMP-9, we improved recovery after stroke to an equivalent degree as observed with traditional stem cell treatment in a rodent model. While VEGF-A and MMP-9 have many unique mechanisms of action, connective tissue growth factor (CTGF) interacts with both VEGF-A and MMP-9. With our hydrogel system as well as with stem cell delivery, the CTGF pathway is shown to be downregulated with improved stroke recovery.


Asunto(s)
Células-Madre Neurales/trasplante , Recuperación de la Función/fisiología , Trasplante de Células Madre , Accidente Cerebrovascular/fisiopatología , Accidente Cerebrovascular/terapia , Ingeniería de Tejidos , Animales , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Humanos , Hidrogeles/farmacología , Inyecciones , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , Modelos Biológicos , Células-Madre Neurales/efectos de los fármacos , Ratas Desnudas , Recuperación de la Función/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/metabolismo
6.
Biomaterials ; 142: 31-40, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28719819

RESUMEN

Exogenous human neural progenitor cells (hNPCs) are promising stroke therapeutics, but optimal delivery conditions and exact recovery mechanisms remain elusive. To further elucidate repair processes and improve stroke outcomes, we developed an electrically conductive, polymer scaffold for hNPC delivery. Electrical stimulation of hNPCs alters their transcriptome including changes to the VEGF-A pathway and genes involved in cell survival, inflammatory response, and synaptic remodeling. In our experiments, exogenous hNPCs were electrically stimulated (electrically preconditioned) via the scaffold 1 day prior to implantation. After in vitro stimulation, hNPCs on the scaffold are transplanted intracranially in a distal middle cerebral artery occlusion rat model. Electrically preconditioned hNPCs improved functional outcomes compared to unstimulated hNPCs or hNPCs where VEGF-A was blocked during in vitro electrical preconditioning. The ability to manipulate hNPCs via a conductive scaffold creates a new approach to optimize stem cell-based therapy and determine which factors (such as VEGF-A) are essential for stroke recovery.


Asunto(s)
Conductividad Eléctrica , Células-Madre Neurales/metabolismo , Células-Madre Neurales/trasplante , Polímeros/química , Recuperación de la Función , Accidente Cerebrovascular/fisiopatología , Accidente Cerebrovascular/terapia , Andamios del Tejido/química , Animales , Infarto Encefálico/patología , Estimulación Eléctrica , Regulación de la Expresión Génica , Humanos , Masculino , Pirroles/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Desnudas , Factor A de Crecimiento Endotelial Vascular/metabolismo
7.
Brain ; 139(Pt 2): 468-80, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26685158

RESUMEN

Ischaemic stroke is the leading cause of severe long-term disability yet lacks drug therapies that promote the repair phase of recovery. This repair phase of stroke occurs days to months after stroke onset and involves brain remapping and plasticity within the peri-infarct zone. Elucidating mechanisms that promote this plasticity is critical for the development of new therapeutics with a broad treatment window. Inhibiting tonic (extrasynaptic) GABA signalling during the repair phase was reported to enhance functional recovery in mice suggesting that GABA plays an important function in modulating brain repair. While tonic GABA appears to suppress brain repair after stroke, less is known about the role of phasic (synaptic) GABA during the repair phase. We observed an increase in postsynaptic phasic GABA signalling in mice within the peri-infarct cortex specific to layer 5; we found increased numbers of α1 receptor subunit-containing GABAergic synapses detected using array tomography, and an associated increased efficacy of spontaneous and miniature inhibitory postsynaptic currents in pyramidal neurons. Furthermore, we demonstrate that enhancing phasic GABA signalling using zolpidem, a Food and Drug Administration (FDA)-approved GABA-positive allosteric modulator, during the repair phase improved behavioural recovery. These data identify potentiation of phasic GABA signalling as a novel therapeutic strategy, indicate zolpidem's potential to improve recovery, and underscore the necessity to distinguish the role of tonic and phasic GABA signalling in stroke recovery.


Asunto(s)
Sistemas de Liberación de Medicamentos , Agonistas de Receptores de GABA-A/administración & dosificación , Inhibición Neural/fisiología , Piridinas/administración & dosificación , Receptores de GABA-A/fisiología , Accidente Cerebrovascular/tratamiento farmacológico , Animales , Sistemas de Liberación de Medicamentos/tendencias , Masculino , Ratones , Ratones Endogámicos C57BL , Neocórtex/efectos de los fármacos , Neocórtex/fisiología , Inhibición Neural/efectos de los fármacos , Técnicas de Cultivo de Órganos , Recuperación de la Función/efectos de los fármacos , Recuperación de la Función/fisiología , Accidente Cerebrovascular/patología , Accidente Cerebrovascular/fisiopatología , Zolpidem
8.
Am J Pathol ; 184(9): 2493-504, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25134760

RESUMEN

Stroke is the leading cause of adult disability and the fourth most common cause of death in the United States. Inflammation is thought to play an important role in stroke pathology, but the factors that promote inflammation in this setting remain to be fully defined. An understudied but important factor is the role of meningeal-located immune cells in modulating brain pathology. Although different immune cells traffic through meningeal vessels en route to the brain, mature mast cells do not circulate but are resident in the meninges. With the use of genetic and cell transfer approaches in mice, we identified evidence that meningeal mast cells can importantly contribute to the key features of stroke pathology, including infiltration of granulocytes and activated macrophages, brain swelling, and infarct size. We also obtained evidence that two mast cell-derived products, interleukin-6 and, to a lesser extent, chemokine (C-C motif) ligand 7, can contribute to stroke pathology. These findings indicate a novel role for mast cells in the meninges, the membranes that envelop the brain, as potential gatekeepers for modulating brain inflammation and pathology after stroke.


Asunto(s)
Mastocitos/inmunología , Meninges/inmunología , Accidente Cerebrovascular/inmunología , Animales , Encéfalo/inmunología , Encéfalo/patología , Modelos Animales de Enfermedad , Citometría de Flujo , Técnicas de Sustitución del Gen , Imagen por Resonancia Magnética , Masculino , Mastocitos/patología , Meninges/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Accidente Cerebrovascular/patología
9.
Stem Cells ; 29(2): 274-85, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21732485

RESUMEN

Cell transplantation offers a novel therapeutic strategy for stroke; however, how transplanted cells function in vivo is poorly understood. We show for the first time that after subacute transplantation into the ischemic brain of human central nervous system stem cells grown as neurospheres (hCNS-SCns), the stem cell-secreted factor, human vascular endothelial growth factor (hVEGF), is necessary for cell-induced functional recovery. We correlate this functional recovery to hVEGF-induced effects on the host brain including multiple facets of vascular repair and its unexpected suppression of the inflammatory response. We found that transplanted hCNS-SCns affected multiple parameters in the brain with different kinetics: early improvement in blood-brain barrier integrity and suppression of inflammation was followed by a delayed spatiotemporal regulated increase in neovascularization. These events coincided with a bimodal pattern of functional recovery, with, an early recovery independent of neovascularization, and a delayed hVEGF-dependent recovery coincident with neovascularization. Therefore, cell transplantation therapy offers an exciting multimodal strategy for brain repair in stroke and potentially other disorders with a vascular or inflammatory component.


Asunto(s)
Recuperación de la Función/fisiología , Trasplante de Células Madre/métodos , Células Madre/metabolismo , Accidente Cerebrovascular/terapia , Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/fisiología , Encéfalo/irrigación sanguínea , Diferenciación Celular , Células Cultivadas , Sistema Nervioso Central , Humanos , Neovascularización Fisiológica , Ratas , Ratas Desnudas , Cicatrización de Heridas
10.
Brain ; 134(Pt 6): 1777-89, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21616972

RESUMEN

Stem cell transplantation promises new hope for the treatment of stroke although significant questions remain about how the grafted cells elicit their effects. One hypothesis is that transplanted stem cells enhance endogenous repair mechanisms activated after cerebral ischaemia. Recognizing that bilateral reorganization of surviving circuits is associated with recovery after stroke, we investigated the ability of transplanted human neural progenitor cells to enhance this structural plasticity. Our results show the first evidence that human neural progenitor cell treatment can significantly increase dendritic plasticity in both the ipsi- and contralesional cortex and this coincides with stem cell-induced functional recovery. Moreover, stem cell-grafted rats demonstrated increased corticocortical, corticostriatal, corticothalamic and corticospinal axonal rewiring from the contralesional side; with the transcallosal and corticospinal axonal sprouting correlating with functional recovery. Furthermore, we demonstrate that axonal transport, which is critical for both proper axonal function and axonal sprouting, is inhibited by stroke and that this is rescued by the stem cell treatment, thus identifying another novel potential mechanism of action of transplanted cells. Finally, we established in vitro co-culture assays in which these stem cells mimicked the effects observed in vivo. Through immunodepletion studies, we identified vascular endothelial growth factor, thrombospondins 1 and 2, and slit as mediators partially responsible for stem cell-induced effects on dendritic sprouting, axonal plasticity and axonal transport in vitro. Thus, we postulate that human neural progenitor cells aid recovery after stroke through secretion of factors that enhance brain repair and plasticity.


Asunto(s)
Transporte Axonal/fisiología , Isquemia Encefálica/cirugía , Corteza Cerebral/citología , Células-Madre Neurales , Plasticidad Neuronal/fisiología , Análisis de Varianza , Animales , Biotina/análogos & derivados , Biotina/metabolismo , Infarto Encefálico/etiología , Infarto Encefálico/patología , Isquemia Encefálica/complicaciones , Supervivencia Celular , Células Cultivadas , Cuerpo Calloso/patología , Dendritas/fisiología , Dextranos/metabolismo , Modelos Animales de Enfermedad , Feto , Regulación de la Expresión Génica , Humanos , Masculino , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/fisiología , Células-Madre Neurales/trasplante , Desempeño Psicomotor/fisiología , ARN Mensajero/metabolismo , Ratas , Ratas Desnudas , Ratas Sprague-Dawley , Factores de Tiempo , Vibrisas/inervación
11.
J Neurosci Methods ; 196(2): 247-57, 2011 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-21256866

RESUMEN

Middle cerebral artery occlusion (MCAO) in rats is a well-studied experimental model for ischemic stroke leading to brain infarction and functional deficits. Many preclinical studies have focused on a small time window after the ischemic episode to evaluate functional outcome for screening therapeutic candidates. Short evaluation periods following injury have led to significant setbacks due to lack of information on the delayed effects of treatments, as well as short-lived and reversible neuroprotection, so called false-positive results. In this report, we evaluated long-term functional deficit for 90 days after MCAO in two rat strains with two durations of ischemic insult, in order to identify the best experimental paradigm to assess injury and subsequent recovery. Behavioral outcomes were measured pre-MCAO followed by weekly assessment post-stroke. Behavioral tests included the 18-point composite neurological score, 28-point neuroscore, rearing test, vibrissae-evoked forelimb placing test, foot fault test and the CatWalk. Brain lesions were assessed to correlate injury to behavior outcomes at the end of study. Our results indicate that infarction volume in Sprague-Dawley rats was dependent on occlusion duration. In contrast, the infarction volume in Wistar rats did not correlate with the duration of ischemic episode. Functional outcomes were not dependent on occlusion time in either strain; however, measurable deficits were detectable long-term in limb asymmetry, 18- and 28-point neuroscores, forelimb placing, paw swing speed, and gait coordination. In conclusion, these behavioral assays, in combination with an extended long-term assessment period, can be used for evaluating therapeutic candidates in preclinical models of ischemic stroke.


Asunto(s)
Conducta Animal/fisiología , Isquemia Encefálica/diagnóstico , Isquemia Encefálica/fisiopatología , Evaluación de la Discapacidad , Accidente Cerebrovascular/diagnóstico , Accidente Cerebrovascular/fisiopatología , Animales , Isquemia Encefálica/patología , Modelos Animales de Enfermedad , Masculino , Examen Neurológico/métodos , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Recuperación de la Función/fisiología , Accidente Cerebrovascular/patología
12.
Neurobiol Dis ; 37(2): 275-83, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19822211

RESUMEN

Stem cell transplantation has evolved as a promising experimental treatment approach for stroke. In this review, we address the major hurdles for successful translation from basic research into clinical applications and discuss possible strategies to overcome these issues. We summarize the results from present pre-clinical and clinical studies and focus on specific areas of current controversy and research: (i) the therapeutic time window for cell transplantation; (ii) the selection of patients likely to benefit from such a therapy; (iii) the optimal route of cell delivery to the ischemic brain; (iv) the most suitable cell types and sources; (v) the potential mechanisms of functional recovery after cell transplantation; and (vi) the development of imaging techniques to monitor cell therapy.


Asunto(s)
Encéfalo/cirugía , Trasplante de Células Madre/métodos , Accidente Cerebrovascular/cirugía , Animales , Encéfalo/patología , Encéfalo/fisiopatología , Proliferación Celular , Supervivencia de Injerto/fisiología , Humanos , Microinyecciones/métodos , Microinyecciones/tendencias , Selección de Paciente , Recuperación de la Función/fisiología , Células Madre/citología , Células Madre/fisiología , Accidente Cerebrovascular/fisiopatología , Factores de Tiempo
13.
Cell Transplant ; 18(7): 691-3, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19796499

RESUMEN

A consortium of translational stem cell and stroke experts from multiple academic institutes and biotechnology companies, under the guidance of the government (FDA/NIH), is missing. Here, we build a case for the establishment of this consortium if cell therapy for stroke is to advance from the laboratory to the clinic.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Accidente Cerebrovascular/terapia , Investigación Biomédica Traslacional/organización & administración , Academias e Institutos , Animales , Ensayos Clínicos como Asunto/normas , Evaluación Preclínica de Medicamentos/normas , Humanos , National Institutes of Health (U.S.) , Sector Privado , Trasplante de Células Madre , Estados Unidos , United States Food and Drug Administration
14.
J Neurosci Methods ; 173(2): 286-90, 2008 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-18621079

RESUMEN

Intracerebral injection of the vasoconstrictor peptide, endothelin-1 (ET-1), has been used as a method to induce focal ischemia in rats. The relative technical simplicity of this model makes it attractive for use in mice. However, the effect of ET-1 on mouse brains has not been firmly established. In this study, we determined the ability of ET-1 to induce focal cerebral ischemia in four different mouse strains (CD1, C57/BL6, NOD/SCID, and FVB). In contrast to rats, intracerebral injection of ET-1 did not produce a lesion in any mouse strain tested. A combination of ET-1 injection with either CCA occlusion or N(G)-nitro-l-arginine methyl ester (l-NAME) injection produced only a small infarct and its size was strain-dependent. A triple combination of CCA occlusion with co-injection of ET-1 and l-NAME produced a lesion in all mouse strains tested, and this resulted in a significant motor deficit. However, lesion size was still relatively small and strain-dependent. This study shows that ET-1 has a much less potent effect for producing an infarct in mice than rats.


Asunto(s)
Isquemia Encefálica/inducido químicamente , Arterias Cerebrales/efectos de los fármacos , Modelos Animales de Enfermedad , Endotelina-1/farmacología , Vasoconstricción/efectos de los fármacos , Animales , Infarto Encefálico/inducido químicamente , Infarto Encefálico/patología , Infarto Encefálico/fisiopatología , Isquemia Encefálica/patología , Isquemia Encefálica/fisiopatología , Enfermedades de las Arterias Carótidas/etiología , Enfermedades de las Arterias Carótidas/fisiopatología , Arterias Cerebrales/patología , Arterias Cerebrales/fisiopatología , Inhibidores Enzimáticos/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones SCID , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico Sintasa de Tipo III/antagonistas & inhibidores , Ratas , Ratas Sprague-Dawley , Especificidad de la Especie , Vasoconstricción/fisiología , Vasoconstrictores/farmacología
16.
Proc Natl Acad Sci U S A ; 104(24): 10211-6, 2007 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-17553967

RESUMEN

Noninvasive monitoring of stem cells, using high-resolution molecular imaging, will be instrumental to improve clinical neural transplantation strategies. We show that labeling of human central nervous system stem cells grown as neurospheres with magnetic nanoparticles does not adversely affect survival, migration, and differentiation or alter neuronal electrophysiological characteristics. Using MRI, we show that human central nervous system stem cells transplanted either to the neonatal, the adult, or the injured rodent brain respond to cues characteristic for the ambient microenvironment resulting in distinct migration patterns. Nanoparticle-labeled human central nervous system stem cells survive long-term and differentiate in a site-specific manner identical to that seen for transplants of unlabeled cells. We also demonstrate the impact of graft location on cell migration and describe magnetic resonance characteristics of graft cell death and subsequent clearance. Knowledge of migration patterns and implementation of noninvasive stem cell tracking might help to improve the design of future clinical neural stem cell transplantation.


Asunto(s)
Imagen por Resonancia Magnética , Monitoreo Fisiológico , Neuronas/trasplante , Trasplante de Células Madre , Células Madre/fisiología , Animales , Animales Recién Nacidos , Biomarcadores , Lesiones Encefálicas/patología , Lesiones Encefálicas/terapia , Diferenciación Celular , Linaje de la Célula , Movimiento Celular , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Dextranos , Estudios de Factibilidad , Óxido Ferrosoférrico , Humanos , Inyecciones Intraventriculares , Hierro/administración & dosificación , Hierro/química , Hierro/metabolismo , Magnetismo , Nanopartículas de Magnetita , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Nanopartículas , Neuronas/citología , Neuronas/diagnóstico por imagen , Neuronas/fisiología , Óxidos/administración & dosificación , Óxidos/química , Óxidos/metabolismo , Técnicas de Placa-Clamp , Radiografía , Ratas , Ratas Sprague-Dawley , Accidente Cerebrovascular/etiología , Accidente Cerebrovascular/patología , Accidente Cerebrovascular/terapia , Trasplante Heterólogo
17.
J Neurosci ; 24(27): 6202-8, 2004 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-15240812

RESUMEN

Increasing evidence suggests that glutamate activates the generation of lactate from glucose in astrocytes; this lactate is shuttled to neurons that use it as a preferential energy source. We explore this multicellular "lactate shuttle" with a novel dual-cell, dual-gene therapy approach and determine the neuroprotective potential of enhancing this shuttle. Viral vector-driven overexpression of a glucose transporter in glia enhanced glucose uptake, lactate efflux, and the glial capacity to protect neurons from excitotoxicity. In parallel, overexpression of a lactate transporter in neurons enhanced lactate uptake and neuronal resistance to excitotoxicity. Finally, overexpression of both transgenes in the respective cell types provided more protection than either therapy alone, demonstrating that a dual-cell, dual-gene therapy approach gives greater neuroprotection than the conventional single-cell, single-gene strategy.


Asunto(s)
Metabolismo Energético/genética , Terapia Genética/métodos , Neuroglía/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neurotoxinas/toxicidad , Animales , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Células Cultivadas , Citoprotección/efectos de los fármacos , Citoprotección/genética , Sinergismo Farmacológico , Metabolismo Energético/efectos de los fármacos , Estudios de Factibilidad , Glucosa/metabolismo , Glucosa/farmacocinética , Transportador de Glucosa de Tipo 1 , Ácido Láctico/metabolismo , Ácido Láctico/farmacocinética , Transportadores de Ácidos Monocarboxílicos/biosíntesis , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/farmacología , Proteínas de Transporte de Monosacáridos/biosíntesis , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Transporte de Monosacáridos/farmacología , Neuroglía/metabolismo , Plásmidos/genética , Plásmidos/farmacología , Ratas , Ratas Sprague-Dawley , Transfección/métodos , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...