Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Mol Psychiatry ; 28(1): 118-126, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35918397

RESUMEN

Growing evidence suggests that Rho GTPases and molecules involved in their signaling pathways play a major role in the development of the central nervous system (CNS). Whole exome sequencing (WES) and de novo examination of mutations, including SNP (Single Nucleotide Polymorphism) in genes coding for the molecules of their signaling cascade, has allowed the recent discovery of dominant autosomic mutations and duplication or deletion of candidates in the field of neurodevelopmental diseases (NDD). Epidemiological studies show that the co-occurrence of several of these neurological pathologies may indeed be the rule. The regulators of Rho GTPases have often been considered for cognitive diseases such as intellectual disability (ID) and autism. But, in a remarkable way, mild to severe motor symptoms are now reported in autism and other cognitive NDD. Although a more abundant litterature reports the involvement of Rho GTPases and signaling partners in cognitive development, molecular investigations on their roles in central nervous system (CNS) development or degenerative CNS pathologies also reveal their role in embryonic and perinatal motor wiring through axon guidance and later in synaptic plasticity. Thus, Rho family small GTPases have been revealed to play a key role in brain functions including learning and memory but their precise role in motor development and associated symptoms in NDD has been poorly scoped so far, despite increasing clinical data highlighting the links between cognition and motor development. Indeed, early impairements in fine or gross motor performance is often an associated feature of NDDs, which then impact social communication, cognition, emotion, and behavior. We review here recent insights derived from clinical developmental neurobiology in the field of Rho GTPases and NDD (autism spectrum related disorder (ASD), ID, schizophrenia, hypotonia, spastic paraplegia, bipolar disorder and dyslexia), with a specific focus on genetic alterations affecting Rho GTPases that are involved in motor circuit development.


Asunto(s)
Trastorno Autístico , Discapacidad Intelectual , Trastornos Motores , Trastornos del Neurodesarrollo , Humanos , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo , Trastornos del Neurodesarrollo/genética , Discapacidad Intelectual/genética , Trastorno Autístico/genética
3.
Eur J Hum Genet ; 27(1): 49-60, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30206355

RESUMEN

We identified, through a genome-wide search for new imprinted genes in the human placenta, DSCAM (Down Syndrome Cellular Adhesion Molecule) as a paternally expressed imprinted gene. Our work revealed the presence of a Differentially Methylated Region (DMR), located within intron 1 that might regulate the imprinting in the region. This DMR showed a maternal allele methylation, compatible with its paternal expression. We showed that DSCAM is present in endothelial cells and the syncytiotrophoblast layer of the human placenta. In mouse, Dscam expression is biallelic in foetal brain and placenta excluding any possible imprinting in these tissues. This gene encodes a cellular adhesion molecule mainly known for its role in neurone development but its function in the placenta remains unclear. We report here the first imprinted gene located on human chromosome 21 with potential clinical implications.


Asunto(s)
Moléculas de Adhesión Celular/genética , Cromosomas Humanos Par 21/genética , Impresión Genómica , Placenta/metabolismo , Animales , Células COS , Células Cultivadas , Chlorocebus aethiops , Metilación de ADN , Femenino , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Embarazo
4.
Development ; 145(19)2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30177526

RESUMEN

Trio, a member of the Dbl family of guanine nucleotide exchange factors, activates Rac1 downstream of netrin 1/DCC signalling in axon outgrowth and guidance. Although it has been proposed that Trio also activates RhoA, the putative upstream factors remain unknown. Here, we show that Slit2 induces Trio-dependent RhoA activation, revealing a crosstalk between Slit and Trio/RhoA signalling. Consistently, we found that RhoA activity is hindered in vivo in Trio mutant mouse embryos. We next studied the development of the ventral telencephalon and thalamocortical axons, which have been previously shown to be controlled by Slit2. Remarkably, this analysis revealed that Trio knockout (KO) mice show phenotypes that bear strong similarities to the ones that have been reported in Slit2 KO mice in both guidepost corridor cells and thalamocortical axon pathfinding in the ventral telencephalon. Taken together, our results show that Trio induces RhoA activation downstream of Slit2, and support a functional role in ensuring the proper positioning of both guidepost cells and a major axonal tract. Our study indicates a novel role for Trio in Slit2 signalling and forebrain wiring, highlighting its role in multiple guidance pathways as well as in biological functions of importance for a factor involved in human brain disorders.


Asunto(s)
Tipificación del Cuerpo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Telencéfalo/embriología , Telencéfalo/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Animales , Orientación del Axón , Axones/metabolismo , Embrión de Mamíferos/citología , Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Conos de Crecimiento/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Ratones Noqueados , Modelos Biológicos , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinasas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Tálamo/embriología , Tálamo/metabolismo
5.
J Neurosci ; 35(48): 15772-86, 2015 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-26631461

RESUMEN

Expression of the neuronal K/Cl transporter KCC2 is tightly regulated throughout development and by both normal and pathological neuronal activity. Changes in KCC2 expression have often been associated with altered chloride homeostasis and GABA signaling. However, recent evidence supports a role of KCC2 in the development and function of glutamatergic synapses through mechanisms that remain poorly understood. Here we show that suppressing KCC2 expression in rat hippocampal neurons precludes long-term potentiation of glutamatergic synapses specifically by preventing activity-driven membrane delivery of AMPA receptors. This effect is independent of KCC2 transporter function and can be accounted for by increased Rac1/PAK- and LIMK-dependent cofilin phosphorylation and actin polymerization in dendritic spines. Our results demonstrate that KCC2 plays a critical role in the regulation of spine actin cytoskeleton and gates long-term plasticity at excitatory synapses in cortical neurons.


Asunto(s)
Factores Despolimerizantes de la Actina/metabolismo , Neuronas/metabolismo , Receptores AMPA/metabolismo , Simportadores/metabolismo , Actinas/metabolismo , Animales , Células Cultivadas , Espinas Dendríticas/metabolismo , Relación Dosis-Respuesta a Droga , Doxiciclina/farmacología , Embrión de Mamíferos , Inhibidores Enzimáticos/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Exocitosis/efectos de los fármacos , Exocitosis/genética , Hipocampo/citología , Neuronas/efectos de los fármacos , Neuronas/ultraestructura , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Sprague-Dawley , Simportadores/genética , Tiazoles/antagonistas & inhibidores , Tiazoles/farmacología , Tioglicolatos/antagonistas & inhibidores , Tioglicolatos/farmacología , Cotransportadores de K Cl
6.
Cell Mol Life Sci ; 72(6): 1029-43, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25359233

RESUMEN

The neuromuscular junction (NMJ) is the synaptic connection between motor neurons and muscle fibers. It is involved in crucial processes such as body movements and breathing. Its proper development requires the guidance of motor axons toward their specific targets, the development of multi-innervated myofibers, and a selective synapse stabilization. It first consists of the removal of excessive motor axons on myofibers, going from multi-innervation to a single innervation of each myofiber. Whereas guidance cues of motor axons toward their specific muscular targets are well characterized, only few molecular and cellular cues have been reported as clues for selecting and stabilizing specific neuromuscular junctions. We will first provide a brief summary on NMJ development. We will then review molecular cues that are involved in NMJ stabilization, in both pre- and post-synaptic compartments, considering motor neurons and Schwann cells on the one hand, and muscle on the other hand. We will provide links with pathologies and highlight advances that can be brought both by basic research on NMJ development and clinical data resulting from the analyses of neurodegeneration of synaptic connections to obtain a better understanding of this process. The goal of this review is to highlight the findings toward understanding the roles of poly- or single-innervations and the underlying mechanisms of NMJ stabilization.


Asunto(s)
Neuronas Motoras/fisiología , Músculos/inervación , Unión Neuromuscular/fisiología , Animales , Axones/fisiología , Humanos , Unión Neuromuscular/crecimiento & desarrollo , Sinapsis/fisiología
7.
Oncotarget ; 5(9): 2703-13, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24811761

RESUMEN

The ALK (Anaplastic Lymphoma Kinase) gene encodes a tyrosine kinase receptor preferentially expressed in the central and peripheral nervous systems. A syndromic presentation associating congenital neuroblastoma with severe encephalopathy and an abnormal shape of the brainstem has been described in patients harbouring de novo germline F1174V and F1245V ALK mutations. Here, we investigated the phenotype of knock-in (KI) mice bearing the AlkF1178L mutation (F1174L in human). Although heterozygous KI mice did not reproduce the severe breathing and feeding difficulties observed in human patients, behavioral tests documented a reduced activity during dark phases and an increased anxiety of mutated mice. Matings of heterozygotes yielded the expected proportions of wild-type, heterozygotes and homozygotes at birth but a high neonatal lethality was noticed for homozygotes. We documented Alk expression in several motor nuclei of the brainstem involved in the control of sucking and swallowing. Evaluation of basic physiological functions 12 hours after birth revealed slightly more apneas but a dramatic reduced milk intake for homozygotes compared to control littermates. Overall, our data demonstrate that Alk activation above a critical threshold is not compatible with survival in mice, in agreement with the extremely severe phenotype of patients carrying aggressive de novo ALK germline mutations.


Asunto(s)
Conducta Animal/fisiología , Ingestión de Alimentos , Mutación/genética , Neuroblastoma/genética , Proteínas Tirosina Quinasas Receptoras/fisiología , Respiración , Quinasa de Linfoma Anaplásico , Animales , Animales Recién Nacidos , Genes Letales , Humanos , Técnicas para Inmunoenzimas , Masculino , Ratones , Neuroblastoma/metabolismo , Neuroblastoma/patología , Fenotipo
8.
Development ; 140(7): 1583-93, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23482493

RESUMEN

CLIPR-59 is a new member of the cytoplasmic linker proteins (CLIP) family mainly localized to the trans-Golgi network. We show here that Clipr-59 expression in mice is restricted to specific pools of neurons, in particular motoneurons (MNs), and progressively increases from embryonic day 12.5 (E12.5) until the first postnatal days. We generated a Clipr-59 knockout mouse model that presents perinatal lethality due to respiratory defects. Physiological experiments revealed that this altered innervation prevents the normal nerve-elicited contraction of the mutant diaphragm that is reduced both in amplitude and fatigue-resistance at E18.5, despite unaffected functional muscular contractility. Innervation of the mutant diaphragm is not altered until E15.5, but is then partially lost in the most distal parts of the muscle. Ultrastructural observations of neuromuscular junctions (NMJs) in the distal region of the diaphragm reveal a normal organization, but a lower density of nerve terminals capped by terminal Schwann cells in E18.5 mutant when compared with control embryos. Similar defects in NMJ stability, with a hierarchy of severity along the caudo-rostral axis, are also observed in other muscles innervated by facial and spinal MNs in Clipr-59 mutant mice. Clipr-59 deficiency therefore affects axon maintenance but not axon guidance toward muscle targets. Thus, CLIPR-59 is involved in the stabilization of specific motor axons at the NMJ during mouse late embryogenesis and its role is crucial for mouse perinatal development.


Asunto(s)
Desarrollo Embrionario/genética , Proteínas Asociadas a Microtúbulos/fisiología , Unión Neuromuscular/embriología , Unión Neuromuscular/genética , Unión Neuromuscular/fisiología , Animales , Encéfalo/embriología , Encéfalo/metabolismo , Células Cultivadas , Embrión de Mamíferos , Desarrollo Embrionario/fisiología , Femenino , Edad Gestacional , Homeostasis/genética , Homeostasis/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Embarazo , Médula Espinal/embriología , Médula Espinal/metabolismo
9.
Dev Biol ; 371(2): 215-26, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-22960232

RESUMEN

The precerebellar nuclei (PCN) originate from the rhombic lip, a germinal neuroepithelium adjacent to the roof plate of the fourth ventricle. We first report here that, in chicken, the Brn3a-expressing postmitotic medullary cells that produce the inferior olive (ION, the source of cerebellar climbing fibres) originate from a dorso-ventral domain roughly coinciding with the hindbrain vestibular column. Whereas Foxd3 expression labels the whole mature ION but is only detected in a subpopulation of ION neuroblasts initiating their migration, we report that Brn3a allows the visualization of the whole population of ION neurons from the very beginning of their migration. We show that Brn3a-positive neurons migrate tangentially ventralwards through a characteristic dorso-ventral double submarginal stream. Cath1 expressing progenitors lying just dorsal to the ION origin correlated dorso-ventral topography with the prospective cochlear column (caudal to it) and generate precerebellar nuclei emitting mossy-fiber cerebellar afferents. We used the chick-quail chimaera technique with homotopic grafts at HH10 to determine the precise fate map of ION precursors across the caudal cryptorhombomeric subdivisions of the medullary hindbrain (r8-r11). We demonstrate that each crypto-rhombomere contributes to two lamellae of the ION, while each ION sub-nucleus originates from at least two contiguous crypto-rhombomeres. We then questioned how rhombomere identity is related to the plasticity of cell type specification in the dorsal hindbrain. The potential plasticity of ectopically HH10 grafted ION progenitors to change their original fate in alternative rostrocaudal environments was examined. Heterotopic grafts from the presumptive ION territory to the pontine region (r4-r5) caused a change of fate, since the migrated derivatives adopted a pontine phenotype. The reverse experiment caused pontine progenitors to produce derivatives appropriately integrated into the ION complex. Grafts of ION progenitor domains to myelomeres (my) 2-3 also showed complete fate regulation, reproducing spinal cord-like structures, whereas the reverse experiment revealed the inability of my2-3 to generate ION cell types. This was not the case with more caudal, relatively less specified myelomeres (my5-6). Interestingly, when heterotopically grafted cells are integrated dorsally, they do not change their phenotype. Our results support the hypothesis that positional information present in the hindbrain and spinal cord at early neural tube stages controls the specific fates of ventrally migrating PCN precursors.


Asunto(s)
Núcleo Olivar/metabolismo , Rombencéfalo/metabolismo , Animales , Núcleos Cerebelosos/citología , Núcleos Cerebelosos/embriología , Núcleos Cerebelosos/metabolismo , Pollos , Quimera , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Neuronas/metabolismo , Núcleo Olivar/citología , Núcleo Olivar/embriología , Codorniz , Rombencéfalo/citología , Rombencéfalo/embriología , Médula Espinal/citología , Médula Espinal/embriología , Médula Espinal/metabolismo
10.
J Cell Biol ; 196(1): 37-46, 2012 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-22213797

RESUMEN

Attractive and repulsive molecules such as Semaphorins (Sema) trigger rapid responses that control the navigation of axonal growth cones. The role of vesicular traffic in axonal guidance is still largely unknown. The exocytic vesicular soluble N-ethylmaleimide sensitive fusion protein attachment protein receptor (SNARE) Synaptobrevin 2 (Syb2) is known for mediating neurotransmitter release in mature neurons, but its potential role in axonal guidance remains elusive. Here we show that Syb2 is required for Sema3A-dependent repulsion but not Sema3C-dependent attraction in cultured neurons and in the mouse brain. Syb2 associated with Neuropilin 1 and Plexin A1, two essential components of the Sema3A receptor, via its juxtatransmembrane domain. Sema3A receptor and Syb2 colocalize in endosomal membranes. Moreover, upon Sema3A treatment, Syb2-deficient neurons failed to collapse and transport Plexin A1 to cell bodies. Reconstitution of Sema3A receptor in nonneuronal cells revealed that Sema3A further inhibited the exocytosis of Syb2. Therefore, Sema3A-mediated signaling and axonal repulsion require Syb2-dependent vesicular traffic.


Asunto(s)
Axones/fisiología , Proteínas R-SNARE/fisiología , Semaforina-3A/fisiología , Proteína 2 de Membrana Asociada a Vesículas/fisiología , Animales , Células COS , Chlorocebus aethiops , Cuerpo Calloso/anatomía & histología , Exocitosis/fisiología , Conos de Crecimiento/fisiología , Ratones , Ratones Noqueados , Proteínas R-SNARE/genética , Proteínas R-SNARE/metabolismo , Semaforina-3A/metabolismo , Transducción de Señal , Proteína 2 de Membrana Asociada a Vesículas/genética , Proteína 2 de Membrana Asociada a Vesículas/metabolismo
11.
PLoS One ; 4(4): e5405, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19404406

RESUMEN

BACKGROUND: During development, neuronal growth cones integrate diffusible and contact guidance cues that are conveyed to both actin and microtubule (MT) cytoskeletons and ensure axon outgrowth and pathfinding. Although several post-translational modifications of tubulin have been identified and despite their strong conservation among species, their physiological roles during development, especially in the nervous sytem, are still poorly understood. METHODOLOGY/FINDINGS: Here, we have dissected the role of a post-translational modification of the last amino acid of the alpha-tubulin on axonal growth by analyzing the phenotype of precerebellar neurons in Tubulin tyrosin ligase knock-out mice (TTL(-/-)) through in vivo, ex vivo and in vitro analyses. TTL(-/-) neurons are devoid of tyrosinated tubulin. Their pathway shows defects in vivo, ex vivo, in hindbrains open-book preparations or in vitro, in a collagen matrix. Their axons still orient toward tropic cues, but they emit supernumerary branches and their growth cones are enlarged and exhibit an emission of mis-oriented filopodia. Further analysis of the TTL(-/-) growth cone intracellular organization also reveals that the respective localization of actin and MT filaments is disturbed, with a decrease in the distal accumulation of Myosin IIB, as well as a concomitant Rac1 over-activation in the hindbrain. Pharmacological inhibition of Rac1 over-activation in TTL(-/-) neurons can rescue Myosin IIB localization. CONCLUSIONS/SIGNIFICANCE: In the growth cone, we propose that tubulin tyrosination takes part in the relative arrangement of actin and MT cytoskeletons, in the regulation of small GTPases activity, and consequently, in the proper morphogenesis, organization and pathfinding of the growth cone during development.


Asunto(s)
Conos de Crecimiento/ultraestructura , Tubulina (Proteína)/metabolismo , Tirosina/metabolismo , Actinas/metabolismo , Animales , Axones/ultraestructura , Citoesqueleto/metabolismo , GTP Fosfohidrolasas/metabolismo , Ratones , Miosina Tipo IIB no Muscular/metabolismo , Procesamiento Proteico-Postraduccional , Proteína de Unión al GTP rac1/metabolismo
12.
Mol Cell Neurosci ; 41(4): 429-39, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19409494

RESUMEN

Netrin-1 was previously shown to be required for the tangential migration and survival of neurons that will form the inferior olivary nucleus (ION). Surprisingly, the compared analysis of mutant mice lacking either Netrin-1 or its major receptor DCC reveals striking phenotypic differences besides common features. Although ectopic stops of ION cell bodies occur in the same positions along the migratory stream in both mutants, the ION neurons' number is not affected by the lack of DCC whereas it is reduced in Netrin-1 mutant mice. Thus, cell death results from the absence of Netrin-1 and not from neuron mis-routing, arguing for a role of Netrin-1 as a survival factor in vivo. The secretion of Netrin-1 by the floor plate (FP) is strictly required - whereas DCC is not - to avoid ION axons' repulsion by the FP and allows them to cross it. Leading processes of neurons of other caudal precerebellar nuclei (PCN) cannot cross the FP in either mutant mouse, suggesting differential sensitivity or mechanism of action of Netrin-1 for leading processes of ION and other PCN neurons.


Asunto(s)
Movimiento Celular/fisiología , Factores de Crecimiento Nervioso/metabolismo , Neuronas/fisiología , Núcleo Olivar/citología , Núcleo Olivar/embriología , Receptores de Superficie Celular/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Axones/fisiología , Receptor DCC , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica/genética , Ratones , Ratones Transgénicos , Mutación/fisiología , Factores de Crecimiento Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Netrina-1 , Vías Nerviosas/embriología , Vías Nerviosas/fisiología , Neurogénesis/genética , Neuronas/citología , Técnicas de Cultivo de Órganos , Receptores de Superficie Celular/genética , Proteínas Supresoras de Tumor/genética
13.
J Neurosci ; 27(39): 10323-32, 2007 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-17898204

RESUMEN

During the embryonic development of the hindbrain, movements of neuronal clusters allow the formation of mature "pools", in particular for inferior olivary (ION) and facial motor (fMN) nuclei. The cellular mechanisms of neuron clustering remain uncharacterized. We report that the absence of the Rho-guanine exchange factor Trio, which can activate both RhoG and Rac1 in vivo, prevents the proper formation of ION and fMN subnuclei. Rac1, but not RhoG, appears to be a downstream actor in Trio-induced lamellation. In addition, we report that Cadherin-11 is expressed by a subset of neurons through the overall period of ION and fMN parcellations, and defects observed in trio mutant mice are located specifically in Cadherin-11-expressing regions. Moreover, endogenous Cadherin-11 is found in a complex with Trio when lamellation occurs. Altogether, those results establish a link between Trio activity, the subsequent Rac1 activation, and neuronal clusters organization, as well as a possible recruitment of the Cadherin-11 adhesive receptor to form a complex with Trio.


Asunto(s)
Cadherinas/fisiología , Factores de Intercambio de Guanina Nucleótido/fisiología , Neuronas Motoras/fisiología , Neuropéptidos/fisiología , Núcleo Olivar/fisiología , Fosfoproteínas/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Rombencéfalo/fisiología , Proteínas de Unión al GTP rac/fisiología , Animales , Nervio Facial/fisiología , Ratones , Rombencéfalo/embriología , Proteína de Unión al GTP rac1
14.
Brain Res Brain Res Rev ; 49(2): 134-49, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16111544

RESUMEN

The midbrain/hindbrain (MH) territory containing the mesencephalic and isthmocerebellar primordial is characterized by the expression of several families of regulatory genes including transcription factors (Otx, Gbx, En, and Pax) and signaling molecules (Fgf and Wnt). At earlier stages of avian neural tube, those genes present a dynamic expression pattern and only at HH18-20 onwards, when the mesencephalic/metencephalic constriction is coincident with the Otx2/Gbx2 boundary, their expression domains become more defined. This review summarizes experimental data concerning the genetic mechanisms involved in the specification of the midbrain/hindbrain territory emphasizing the chick/quail chimeric experiments leading to the discovery of a secondary isthmic organizer. Otx2 and Gbx2 co-regulation could determine the precise location of the MH boundary and involved in the inductive events characteristic of the isthmic organizer center.


Asunto(s)
Cerebelo/embriología , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/fisiología , Organizadores Embrionarios/fisiología , Animales , Embrión de Pollo/embriología , Quimera , Inducción Embrionaria , Genes Homeobox/fisiología , Proteínas de Homeodominio/metabolismo , Proteínas de Insectos/metabolismo , Mesencéfalo/embriología , Factores de Transcripción Otx , Codorniz/embriología , Codorniz/genética , Rombencéfalo/embriología
15.
Brain Res Brain Res Rev ; 49(2): 253-66, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16111554

RESUMEN

The precerebellar system provides an interesting model to study tangential migrations. All precerebellar neurons (PCN) are generated in the most alar part of the hindbrain in a region called rhombic lip. PCN first emit a leading process and then translocate their nuclei inside it, a mechanism called nucleokinesis. In the past few years, molecular cues that could affect those processes have been investigated, with a special care on: (i) the identification of extrinsic factors directing cell migration and axon elongation as well as neuronal survival during development; (ii) intracellular reorganizations of the cytoskeleton during nucleokinesis in response to chemotropic factors. The signaling cascades, including regulators of actin and microtubule cytoskeleton, in response to diffusible guidance factors have raised an increasing attention. We will here review the role of guidance cues involved in PCN migration in particular netrin-1, Slit and Nr-CAM. We will also consider Rho-GTPases that have been proposed to mediate axon outgrowth and neuronal migration, especially in response to netrin-1, and which may act as a relay between extracellular signals and intracellular remodeling. Recent findings from in vitro pharmacological inhibition of various Rho-GTPases and over-expression of effectors bring molecular cues that, in accordance with anatomical data, fit the idea that nucleokinesis and axon outgrowth are not strictly coupled events during PCN migration.


Asunto(s)
Axones/fisiología , Movimiento Celular/fisiología , Núcleos Cerebelosos/citología , Núcleos Cerebelosos/embriología , Neuronas/citología , Transducción de Señal/fisiología , Animales , Adhesión Celular/fisiología , Supervivencia Celular/fisiología , Citoesqueleto/fisiología , Líquido Intracelular/metabolismo , Microtúbulos/fisiología , Factores de Crecimiento Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Netrina-1 , Proteínas Supresoras de Tumor/metabolismo , Proteínas de Unión al GTP rho
16.
J Cell Biol ; 167(4): 687-98, 2004 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-15557120

RESUMEN

Netrin-1 acts as a chemoattractant molecule to guide commissural neurons (CN) toward the floor plate by interacting with the receptor deleted in colorectal cancer (DCC). The molecular mechanisms underlying Netrin-1-DCC signaling are still poorly characterized. Here, we show that DCC is phosphorylated in vivo on tyrosine residues in response to Netrin-1 stimulation of CN and that the Src family kinase inhibitors PP2 and SU6656 block both Netrin-1-dependent phosphorylation of DCC and axon outgrowth. PP2 also blocks the reorientation of Xenopus laevis retinal ganglion cells that occurs in response to Netrin-1, which suggests an essential role of the Src kinases in Netrin-1-dependent orientation. Fyn, but not Src, is able to phosphorylate the intracellular domain of DCC in vitro, and we demonstrate that Y1418 is crucial for DCC axon outgrowth function. Both DCC phosphorylation and Netrin-1-induced axon outgrowth are impaired in Fyn(-/-) CN and spinal cord explants. We propose that DCC is regulated by tyrosine phosphorylation and that Fyn is essential for the response of axons to Netrin-1.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Conos de Crecimiento/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Retina/embriología , Médula Espinal/embriología , Proteínas Supresoras de Tumor/metabolismo , Familia-src Quinasas/metabolismo , Animales , Diferenciación Celular/fisiología , Células Cultivadas , Receptor DCC , Inhibidores Enzimáticos/farmacología , Femenino , Conos de Crecimiento/efectos de los fármacos , Conos de Crecimiento/ultraestructura , Masculino , Ratones , Ratones Noqueados , Factores de Crecimiento Nervioso/farmacología , Netrina-1 , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-fyn , Ratas , Receptores de Superficie Celular , Retina/citología , Retina/metabolismo , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Médula Espinal/citología , Médula Espinal/metabolismo , Tirosina/metabolismo , Proteínas de Xenopus , Xenopus laevis , Familia-src Quinasas/antagonistas & inhibidores
17.
Development ; 131(12): 2841-52, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15151987

RESUMEN

During embryonic development, tangentially migrating precerebellar neurons emit a leading process and then translocate their nuclei inside it (nucleokinesis). Netrin 1 (also known as netrin-1) acts as a chemoattractant factor for neurophilic migration of precerebellar neurons (PCN) both in vivo and in vitro. In the present work, we analyzed Rho GTPases that could direct axon outgrowth and/or nuclear migration. We show that the expression pattern of Rho GTPases in developing PCN is consistent with their involvement in the migration of PCN from the rhombic lips. We report that pharmacological inhibition of Rho enhances axon outgrowth of PCN and prevents nuclei migration toward a netrin 1 source, whereas inhibition of Rac and Cdc42 sub-families impair neurite outgrowth of PCN without affecting migration. We show, through pharmacological inhibition, that Rho signaling directs neurophilic migration through Rock activation. Altogether, our results indicate that Rho/Rock acts on signaling pathways favoring nuclear translocation during tangential migration of PCN. Thus, axon extension and nuclear migration of PCN in response to netrin 1 are not strictly dependent processes because: (1) distinct small GTPases are involved; (2) axon extension can occur when migration is blocked; and (3) migration can occur when axon outgrowth is impaired.


Asunto(s)
Axones/fisiología , Cerebelo/embriología , Desarrollo Embrionario y Fetal/fisiología , Factores de Crecimiento Nervioso/fisiología , Neuronas/citología , Factor Rho/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Animales , Movimiento Celular , Núcleo Celular/efectos de los fármacos , Núcleo Celular/fisiología , Núcleo Celular/ultraestructura , Cerebelo/citología , Ratones , Netrina-1 , Proteínas Supresoras de Tumor
18.
J Neurosci ; 22(14): 5992-6004, 2002 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-12122061

RESUMEN

Oligodendrocytes, the myelin-forming cells of the CNS, are generated from multiple foci distributed along the developing neural tube. Little is known about the endogenous guidance cues controlling the migration of oligodendrocyte precursor cells (OPCs) from their site of emergence toward their final destination, mainly the future white matter tracts. During embryonic development, the optic nerve is populated by OPCs originating in the diencephalon that migrate from the chiasm toward the retina. Here we show that OPCs migrating into the embryonic optic nerve express the semaphorin receptors neuropilin-1 and -2, as well as deleted in colorectal cancer (DCC) and, to a lesser extend unc5H1, two of the netrin-1 receptors. Using a functional migration assay, we provide evidence that Sema 3A and netrin-1 exert opposite chemotactic effects, repulsive or attractive, respectively, on embryonic OPCs. In addition, we show that Sema 3F has a dual effect, chemoattractive and mitogenic on embryonic OPCs. The localization of cells expressing Sema 3A, Sema 3F, and netrin-1 is consistent with a role for these ligands in the migration of OPCs in the embryonic optic nerve. Altogether, our results suggest that the migration of OPCs in the embryonic optic nerve is modulated by a balance of effects mediated by members of the semaphorin and netrin families.


Asunto(s)
Movimiento Celular/fisiología , Glicoproteínas/metabolismo , Proteínas de la Membrana/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Oligodendroglía/metabolismo , Animales , Moléculas de Adhesión Celular/biosíntesis , División Celular/efectos de los fármacos , División Celular/fisiología , Línea Celular , Linaje de la Célula , Movimiento Celular/efectos de los fármacos , Quimiotaxis/efectos de los fármacos , Quimiotaxis/fisiología , Técnicas de Cultivo , Receptor DCC , Glicoproteínas/farmacología , Humanos , Proteínas de la Membrana/farmacología , Ratones , Factores de Crecimiento Nervioso/farmacología , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/farmacología , Receptores de Netrina , Netrina-1 , Neuropilina-1 , Oligodendroglía/citología , Oligodendroglía/efectos de los fármacos , Nervio Óptico/citología , Nervio Óptico/embriología , Nervio Óptico/metabolismo , Receptores de Superficie Celular/biosíntesis , Semaforina-3A , Células Madre/citología , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Proteínas Supresoras de Tumor/biosíntesis
19.
Dev Biol ; 246(2): 429-40, 2002 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-12051827

RESUMEN

Inferior olivary neurons (ION) migrate circumferentially around the caudal rhombencephalon starting from the alar plate to locate ventrally close to the floor-plate, ipsilaterally to their site of proliferation. The floor-plate constitutes a source of diffusible factors. Among them, netrin-1 is implied in the survival and attraction of migrating ION in vivo and in vitro. We have looked for a possible involvement of slit-1/2 during ION migration. We report that: (1) slit-1 and slit-2 are coexpressed in the floor-plate of the rhombencephalon throughout ION development; (2) robo-2, a slit receptor, is expressed in migrating ION, in particular when they reach the vicinity of the floor-plate; (3) using in vitro assays in collagen matrix, netrin-1 exerts an attractive effect on ION leading processes and nuclei; (4) slit has a weak repulsive effect on ION axon outgrowth and no effect on migration by itself, but (5) when combined with netrin-1, it antagonizes part of or all of the effects of netrin-1 in a dose-dependent manner, inhibiting the attraction of axons and the migration of cell nuclei. Our results indicate that slit silences the attractive effects of netrin-1 and could participate in the correct ventral positioning of ION, stopping the migration when cell bodies reach the floor-plate.


Asunto(s)
Movimiento Celular , Factores de Crecimiento Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/fisiología , Neuronas/metabolismo , Núcleo Olivar/citología , Animales , Axones , Técnicas de Cocultivo , Hibridación in Situ , Péptidos y Proteínas de Señalización Intercelular , Ratones , Factores de Crecimiento Nervioso/fisiología , Proteínas del Tejido Nervioso/genética , Netrina-1 , Núcleo Olivar/embriología , Proteínas Supresoras de Tumor
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA