Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
4.
Mol Cell Biol ; 27(5): 1581-91, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17158925

RESUMEN

The protein kinase activity of the DNA-dependent protein kinase (DNA-PK) is required for the repair of DNA double-strand breaks (DSBs) via the process of nonhomologous end joining (NHEJ). However, to date, the only target shown to be functionally relevant for the enzymatic role of DNA-PK in NHEJ is the large catalytic subunit DNA-PKcs itself. In vitro, autophosphorylation of DNA-PKcs induces kinase inactivation and dissociation of DNA-PKcs from the DNA end-binding component Ku70/Ku80. Phosphorylation within the two previously identified clusters of phosphorylation sites does not mediate inactivation of the assembled complex and only partially regulates kinase disassembly, suggesting that additional autophosphorylation sites may be important for DNA-PK function. Here, we show that DNA-PKcs contains a highly conserved amino acid (threonine 3950) in a region similar to the activation loop or t-loop found in the protein kinase domain of members of the typical eukaryotic protein kinase family. We demonstrate that threonine 3950 is an in vitro autophosphorylation site and that this residue, as well as other previously identified sites in the ABCDE cluster, is phosphorylated in vivo in irradiated cells. Moreover, we show that mutation of threonine 3950 to the phosphomimic aspartic acid abrogates V(D)J recombination and leads to radiation sensitivity. Together, these data suggest that threonine 3950 is a functionally important, DNA damage-inducible phosphorylation site and that phosphorylation of this site regulates the activity of DNA-PKcs.


Asunto(s)
Proteína Quinasa Activada por ADN/metabolismo , Proteínas Quinasas/química , Treonina/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Dominio Catalítico , Línea Celular , Línea Celular Tumoral , Secuencia Conservada , Proteína Quinasa Activada por ADN/química , Inhibidores Enzimáticos/farmacología , Humanos , Datos de Secuencia Molecular , Ácido Ocadaico/farmacología , Fosforilación , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Radiación Ionizante , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido
6.
Biochemistry ; 45(13): 4164-72, 2006 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-16566590

RESUMEN

Nonhomologous end joining (NHEJ) is the primary mechanism by which mammalian cells repair DNA double-strand breaks (DSBs). Proteins known to play a role in NHEJ include the DNA-dependent protein kinase catalytic subunit (DNA-PKcs), the Ku 70/Ku 80 heterodimer (Ku), XRCC4, and DNA ligase IV. One of the main roles of the DNA-PKcs-Ku complex is to bring the ends of the DSB together in a process termed synapsis, prior to end joining. Synapsis results in the autophosphorylation of DNA-PKcs, which is required to make the DNA ends available for ligation. Here, we describe a novel assay using two-photon fluorescence cross-correlation spectroscopy that allows for the analysis of DNA synapsis and end joining in solution using purified proteins. We demonstrate that although autophosphorylation-defective DNA-PKcs does not support DNA ligase-mediated DNA end joining, like wild-type (WT) DNA-PKcs, it is capable of Ku-dependent DNA synapsis in solution. Moreover, we show that, in the presence of Ku, both WT DNA-PKcs and autophosphorylation-defective DNA-PKcs promote the formation of multiple, large multi-DNA complexes in solution, suggesting that, rather than align two opposing DNA ends, multiple DNA-PK molecules may serve to bring multiple DNA ends into the NHEJ complex.


Asunto(s)
Reparación del ADN/fisiología , Proteína Quinasa Activada por ADN/metabolismo , Animales , Células CHO , Cricetinae , Cricetulus , ADN/metabolismo , ADN Ligasas/metabolismo , Humanos , Espectrometría de Fluorescencia/métodos
8.
Nucleic Acids Res ; 32(14): 4351-7, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15314205

RESUMEN

Non-homologous end joining (NHEJ) is one of the primary pathways for the repair of ionizing radiation (IR)-induced DNA double-strand breaks (DSBs) in mammalian cells. Proteins required for NHEJ include the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs), Ku, XRCC4 and DNA ligase IV. Current models predict that DNA-PKcs, Ku, XRCC4 and DNA ligase IV assemble at DSBs and that the protein kinase activity of DNA-PKcs is essential for NHEJ-mediated repair of DSBs in vivo. We previously identified a cluster of autophosphorylation sites between amino acids 2609 and 2647 of DNA-PKcs. Cells expressing DNA-PKcs in which these autophosphorylation sites have been mutated to alanine are highly radiosensitive and defective in their ability to repair DSBs in the context of extrachromosomal assays. Here, we show that cells expressing DNA-PKcs with mutated autophosphorylation sites are also defective in the repair of IR-induced DSBs in the context of chromatin. Purified DNA-PKcs proteins containing serine/threonine to alanine or aspartate mutations at this cluster of autophosphorylation sites were indistinguishable from wild-type (wt) protein with respect to protein kinase activity. However, mutant DNA-PKcs proteins were defective relative to wt DNA-PKcs with respect to their ability to support T4 DNA ligase-mediated intermolecular ligation of DNA ends. We propose that autophosphorylation of DNA-PKcs at this cluster of sites is important for remodeling of DNA-PK complexes at DNA ends prior to DNA end joining.


Asunto(s)
Daño del ADN , ADN Ligasas/metabolismo , Reparación del ADN , Proteínas de Unión al ADN , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Catálisis , Línea Celular , Cricetinae , ADN/metabolismo , Proteína Quinasa Activada por ADN , Mutación , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Subunidades de Proteína/metabolismo , Radiación Ionizante
9.
Nucleic Acids Res ; 32(6): 1967-72, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15060176

RESUMEN

Caffeine inhibits cell cycle checkpoints, sensitizes cells to ionizing radiation-induced cell killing and inhibits the protein kinase activity of two cell cycle checkpoint regulators, Ataxia-Telangiectasia mutated (ATM) and ATM- and Rad3-related (ATR). In contrast, caffeine has been reported to have little effect on the protein kinase activity of the DNA-dependent protein kinase (DNA-PK), which is essential for the repair of DNA double-strand breaks. Previously, we reported that DNA-PK phosphorylates Thr21 of the 32 kDa subunit of replication protein A (RPA32) in response to camptothecin. In this report we demonstrate that the camptothecin-induced phosphorylation of RPA32 on Thr21 is inhibited by 2 mM caffeine. In addition, we show that caffeine inhibits immunoprecipitated and purified DNA-PK, as well as DNA-PK in cell extracts, with an IC50 of 0.2-0.6 mM. Caffeine inhibited DNA-PK activity through a mixed non-competitive mechanism with respect to ATP. In contrast, 10-fold higher concentrations of caffeine were required to inhibit DNA-PK autophosphorylation in vitro and caffeine failed to inhibit DNA-PKcs dependent double-strand break repair in vivo. These data suggest that while DNA-PK does not appear to be the target of caffeine-induced radiosensitization, caffeine cannot be used to differentiate between ATM, ATR and DNA- PK-dependent substrate phosphorylation in vivo.


Asunto(s)
Cafeína/farmacología , Inhibidores Enzimáticos/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Fármacos Sensibilizantes a Radiaciones/farmacología , Animales , Camptotecina/farmacología , Extractos Celulares , Línea Celular , Cricetinae , Proteína Quinasa Activada por ADN , Proteínas de Unión al ADN/metabolismo , Humanos , Proteínas Nucleares , Fosforilación , Proteína de Replicación A
10.
Nucleic Acids Res ; 32(3): 997-1005, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-14872059

RESUMEN

Replication protein A (RPA) is a single-stranded DNA (ssDNA) binding protein involved in various processes, including nucleotide excision repair and DNA replication. The 32 kDa subunit of RPA (RPA32) is phosphorylated in response to various DNA-damaging agents, and two protein kinases, ataxia-telangiectasia mutated (ATM) and the DNA-dependent protein kinase (DNA-PK) have been implicated in DNA damage-induced phosphorylation of RPA32. However, the relative roles of ATM and DNA-PK in the site-specific DNA damage-induced phosphorylation of RPA32 have not been reported. Here we generated a phosphospecific antibody that recognizes Thr21-phosphorylated RPA32. We show that both DNA-PK and ATM phosphorylate RPA32 on Thr21 in vitro. Ionizing radiation (IR)-induced phosphorylation of RPA32 on Thr21 was defective in ATM-deficient cells, while camptothecin (CPT)-induced phosphorylation of RPA32 on Thr21 was defective in cells lacking functional DNA-PK. Neither ATM nor DNA-PK was required for etoposide (ETOP)-induced RPA32 Thr21 phosphorylation. However, two inhibitors of the ATM- and Rad3-related (ATR) protein kinase activity prevented ETOP-induced Thr21 phosphorylation. Inhibition of DNA replication prevented both the IR- and CPT-induced phosphorylation of Thr21, whereas ETOP-induced Thr21 phosphorylation did not require active DNA replication. Thus, the regulation of RPA32 Thr21 phosphorylation by multiple DNA damage response protein kinases suggests that Thr21 phosphorylation of RPA32 is a crucial step within the DNA damage response.


Asunto(s)
Daño del ADN , Proteínas de Unión al ADN/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , Treonina/metabolismo , Anticuerpos/inmunología , Proteínas de la Ataxia Telangiectasia Mutada , Camptotecina/farmacología , Proteínas de Ciclo Celular , Línea Celular , Replicación del ADN , Proteína Quinasa Activada por ADN , Proteínas de Unión al ADN/química , Etopósido/farmacología , Humanos , Proteínas Nucleares , Fosfatidilinositol 3-Quinasas/clasificación , Fosforilación , Fosfotreonina/inmunología , Proteínas Serina-Treonina Quinasas/metabolismo , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Radiación Ionizante , Proteína de Replicación A , Proteínas Supresoras de Tumor
11.
Prog Cell Cycle Res ; 5: 393-411, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-14593734

RESUMEN

Ataxia-Telangiectasia mutated (ATM) and ATM- and Rad3-related (ATR) are members of the phosphatidyl inositol 3-kinase-like family of serine/threonine protein kinases (PIKKs), and play important roles in the cellular response to DNA damage. Activation of ATM by ionizing radiation results in the activation of signal transduction pathways that induce cell cycle arrest at G1/S, S and G2/M. ATR is required for cell cycle arrest in response to DNA-damaging agents such as ultraviolet radiation that cause bulky lesions. This review focuses on the role of ATM and ATR in various DNA damage response pathways, and discusses the potential for targeting these pathways for the development of novel therapeutics.


Asunto(s)
Proteínas de Ciclo Celular , Ciclo Celular/genética , Daño del ADN/genética , Genes cdc/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Ciclo Celular/efectos de los fármacos , Ciclo Celular/efectos de la radiación , Daño del ADN/efectos de la radiación , Proteínas de Unión al ADN , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Genes cdc/efectos de los fármacos , Genes cdc/efectos de la radiación , Humanos , Proteínas Serina-Treonina Quinasas/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/efectos de la radiación , Radiación Ionizante , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transducción de Señal/efectos de la radiación , Proteínas Supresoras de Tumor
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...