Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Langmuir ; 33(17): 4157-4163, 2017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28402637

RESUMEN

The surface-induced polymerization of a chromophore-functionalized monomer was probed in situ for the first time using a nonlinear optical technique, second-harmonic generation. During the first hours of the polymerization reaction, dramatic changes in the tilt angle of the chromophore-functionalized side groups were observed. Following evaluation of the nonlinear optical data with those obtained from atomic force microscopy and ultraviolet-visible, we conclude that second-harmonic generation efficiently probes the polymerization reaction and the conformational changes of the surface-grafted polymer. With polymerization time, the conformation of the surface-tethered polymer changes from a conformation with the polymer backbone and its side groups flat on the surface, i.e., a "pancake" conformation, to a conformation where the polymer backbone is stretched away combined with tilted side groups or an enlarged tilt angle distribution, i.e., a "brush-type" conformation.

2.
ACS Appl Mater Interfaces ; 8(16): 10451-8, 2016 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-27031364

RESUMEN

We report a new type of nanosphere colloidal lithography to directly fabricate monodisperse silica (SiO2) nanorings by means of reactive ion etching of hollow SiO2 spheres. Detailed TEM, SEM, and AFM structural analysis is complemented by a model describing the geometrical transition from hollow sphere to ring during the etching process. The resulting silica nanorings can be readily redispersed in solution and subsequently serve as universal templates for the synthesis of ring-shaped core-shell nanostructures. As an example we used silica nanorings (with diameter of ∼200 nm) to create a novel plasmonic nanoparticle topology, a silica-Au core-shell nanoring, by self-assembly of Au nanoparticles (<20 nm) on the ring's surface. Spectroscopic measurements and finite difference time domain simulations reveal high quality factor multipolar and antibonding surface plasmon resonances in the near-infrared. By loading different types of nanoparticles on the silica core, hybrid and multifunctional composite nanoring structures could be realized for applications such as MRI contrast enhancement, catalysis, drug delivery, plasmonic and magnetic hyperthermia, photoacoustic imaging, and biochemical sensing.


Asunto(s)
Nanoestructuras , Magnetismo , Nanosferas , Dióxido de Silicio , Resonancia por Plasmón de Superficie
3.
Chemistry ; 22(13): 4521-7, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26880696

RESUMEN

A new prototype consisting of ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles decorated with europium(III) ions encapsulated in a DO3A organic scaffold was designed as a platform for further development of bimodal contrast agents for MRI and optical imaging. The USPIO nanoparticles act as negative MRI contrast agents, whereas the europium(III) ion is a luminophore that is suitable for use in optical imaging detection. The functionalized USPIO nanoparticles were characterized by TEM, DLS, XRD, FTIR, and TXRF analysis, and a full investigation of the relaxometric and optical properties was conducted. The typical luminescence emission of europium(III) was observed and the main red emission wavelength was found at 614 nm. The relaxometric study of these ultrasmall nanoparticles showed r2 values of 114.8 mM(-1) Fes(-1) at 60 MHz, which is nearly double the r2 relaxivity of Sinerem(®).


Asunto(s)
Medios de Contraste/química , Dextranos/química , Europio/química , Compuestos Férricos/química , Nanopartículas de Magnetita/química , Nanopartículas/química , Luminiscencia , Imagen por Resonancia Magnética , Tamaño de la Partícula
4.
Materials (Basel) ; 9(7)2016 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-28773675

RESUMEN

To utilize iron oxide nanoparticles in biomedical applications, a sufficient magnetic moment is crucial. Since this magnetic moment is directly proportional to the size of the superparamagnetic nanoparticles, synthesis methods of superparamagnetic iron oxide nanoparticles with tunable size are desirable. However, most existing protocols are plagued by several drawbacks. Presented here is a one-pot synthesis method resulting in monodisperse superparamagnetic iron oxide nanoparticles with a controllable size and magnetic moment using cost-effective reagents. The obtained nanoparticles were thoroughly characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) measurements. Furthermore, the influence of the size on the magnetic moment of the nanoparticles is analyzed by superconducting quantum interference device (SQUID) magnetometry. To emphasize the potential use in biomedical applications, magnetic heating experiments were performed.

5.
J Mater Chem B ; 3(21): 4370-4376, 2015 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-32262780

RESUMEN

Two structurally similar nanoparticles were designed for multimodal imaging and possible radiotherapy. The assembly consists of ultrasmall superparamagnetic iron oxide nanoparticles that act as contrast agents for MRI with a luminescent rhenium complex, for optical imaging, attached to the surface. Rhenium has the advantage of being luminescent and carries two radio-isotopes 186Re and 188Re making it possible to act as a contrast agent for SPECT (γ) and to be used for radiotherapy (ß). The iron oxide nanoparticles were treated with a silane and further functionalized with picolyl. This picolyl was used to capture rhenium(i)(CO)3-1,10-phenanthroline (ReL1) or rhenium(i)(CO)3-2,2'-bipyridine (ReL2) and forms the final product Fe3O4-picolyl-rhenium(i)(CO)3-1,10-phenanthroline (IO-ReL1) or Fe3O4-silica-picolyl-rhenium(i)(CO)3-2,2'-bipyridine (IO-ReL2), respectively. All products were characterized properly (TEM, XRD, NMR, IR and TXRF) and a full investigation of the relaxometric and optical properties was conducted. Although iron oxide nanoparticles suffer from strong Rayleigh scattering, an efficient sensitized luminescence was observed and the orange emission wavelength was found to be 585 nm for IO-ReL1 and 592 nm for IO-ReL2 after irradiation at 395 nm. The relaxometric study of these ultrasmall nanoparticles showed very promising results. The r2 values measured at a magnetic field strength of 60 MHz of the nanoparticles being 92.9 mM-1 s-1 and 97.5 mM-1 s-1 for IO-ReL1 and IO-ReL2, respectively, were at least 1.5 times larger than Sinerem®.

6.
PLoS One ; 9(10): e109475, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25275378

RESUMEN

Ever since iron oxide nanoparticles have been recognized as promising scaffolds for biomedical applications, their surface functionalization has become even more important. We report the synthesis of a novel polyethylene glycol-based ligand that combines multiple advantageous properties for these applications. The ligand is covalently bound to the surface via a siloxane group, while its polyethylene glycol backbone significantly improves the colloidal stability of the particle in complex environments. End-capping the molecule with a carboxylic acid introduces a variety of coupling chemistry possibilities. In this study an antibody targeting plasminogen activator inhibitor-1 was coupled to the surface and its presence and binding activity was assessed by enzyme-linked immunosorbent assay and surface plasmon resonance experiments. The results indicate that the ligand has high potential towards biomedical applications where colloidal stability and advanced functionality is crucial.


Asunto(s)
Anticuerpos Inmovilizados/química , Compuestos Férricos/química , Nanopartículas/química , Polietilenglicoles/química , Química Clic , Ensayo de Inmunoadsorción Enzimática , Humanos , Ligandos , Inhibidor 1 de Activador Plasminogénico/análisis , Resonancia por Plasmón de Superficie
7.
ACS Appl Mater Interfaces ; 6(7): 4980-8, 2014 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-24641094

RESUMEN

Magnetic (Fe3O4) and nonmagnetic (SiO2 and TiO2) nanoparticles were decorated on their surface with N-[(3-trimethoxysilyl)propyl]ethylenediamine triacetic acid (TMS-EDTA). The aim was to investigate the influence of the substrate on the behavior of these immobilized metal coordinating groups. The nanoparticles functionalized with TMS-EDTA were used for the adsorption and separation of trivalent rare-earth ions from aqueous solutions. The general adsorption capacity of the nanoparticles was very high (100 to 400 mg/g) due to their large surface area. The heavy rare-earth ions are known to have a higher affinity for the coordinating groups than the light rare-earth ions but an additional difference in selectivity was observed between the different nanoparticles. The separation of pairs of rare-earth ions was found to be dependent on the substrate, namely the density of EDTA groups on the surface. The observation that sterical hindrance (or crowding) of immobilized ligands influences the selectivity could provide a new tool for the fine-tuning of the coordination ability of traditional chelating ligands.

8.
Materials (Basel) ; 7(2): 1155-1164, 2014 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-28788506

RESUMEN

Rare earth atoms exhibit several interesting properties, for example, large magnetic moments and luminescence. Introducing these atoms into a different matrix can lead to a material that shows multiple interesting effects. Holmium atoms were incorporated into an iron oxide nanoparticle and the concentration of the dopant atom was changed in order to determine its influence on the host crystal. Its magnetic and magneto-optical properties were investigated by vibrating sample magnetometry and Faraday rotation measurements. The luminescent characteristics of the material, in solution and incorporated in a polymer thin film, were probed by fluorescence experiments.

9.
J Nanopart Res ; 14(9): 1100, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23024598

RESUMEN

Superparamagnetic iron oxide nanoparticles can provide multiple benefits for biomedical applications in aqueous environments such as magnetic separation or magnetic resonance imaging. To increase the colloidal stability and allow subsequent reactions, the introduction of hydrophilic functional groups onto the particles' surface is essential. During this process, the original coating is exchanged by preferably covalently bonded ligands such as trialkoxysilanes. The duration of the silane exchange reaction, which commonly takes more than 24 h, is an important drawback for this approach. In this paper, we present a novel method, which introduces ultrasonication as an energy source to dramatically accelerate this process, resulting in high-quality water-dispersible nanoparticles around 10 nm in size. To prove the generic character, different functional groups were introduced on the surface including polyethylene glycol chains, carboxylic acid, amine, and thiol groups. Their colloidal stability in various aqueous buffer solutions as well as human plasma and serum was investigated to allow implementation in biomedical and sensing applications. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11051-012-1100-5) contains supplementary material, which is available to authorized users.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA