Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 929: 172620, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38642748

RESUMEN

Steeper and sometimes extreme salinity gradients increasingly affect aquatic organisms because of climate change. Hypersalinity habitats demand powerful physiological adaptive strategies. Few teleost species have the capacity to spend their whole life cycle in salinities way over seawater levels. Focusing on the multifunctional gill, we unraveled the tilapia S. melanotheron key strategies to cope with different environmental conditions, ranging from freshwater up to hypersaline habitats. De novo transcriptome assembly based on RNAseq allowed for the analysis of 40,967 annotated transcripts among samples collected in three wild populations at 0, 40 and 80 ‰. A trend analysis of the expression patterns revealed responses across the salinity gradient with different gene pathways involved. Genes linked to ion transport, pH regulation and cell surface receptor signaling were mainly upregulated in the high salinity habitat. We identified tight junction proteins that were critical in high salinity habitats and that were different from the well-known tightening junctional proteins identified and expressed in fresh water. Expression profiles also suggest a change in the vascular tone that could be linked to an osmorespiratory compromise not only in fresh water, but also in high salinity environments. A striking downregulation of genes linked to the immune system and to the heat shock response was observed suggesting an energetic trade-off between immunity and acclimation/adaptation in the hypersaline habitat. The high expression of transcripts coding for immune and heat shock response in the freshwater habitat suggests the establishment of powerful mechanisms to protect gills from environmental threats and to maintain protein integrity. Non-directional expression trends were also detected with an upregulation of genes only in the hypersaline habitat (80 ‰) or only in the marine habitat (40 ‰). Unravel physiological strategies in S. melanotheron populations will help to better understand the molecular basis of fish euryhalinity in salinity-contrasted environments.


Asunto(s)
Perfilación de la Expresión Génica , Branquias , Salinidad , Tilapia , Transcriptoma , Animales , Branquias/metabolismo , Tilapia/genética , Tilapia/fisiología , Agua de Mar
2.
Fish Physiol Biochem ; 50(2): 757-766, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38265685

RESUMEN

The red drum Sciaenops ocellatus is a marine fish species of high commercial interest. Despite improvements in current aquaculture practices, there are still concerns about the impact of daily manipulations regarding fish welfare. To investigate how does fish respond to various challenges, S. ocellatus juveniles were submitted to two acute challenges, namely a confinement stress and a cold-temperature shock, as well as a chronic stress challenge consisting of 18 days of repetitive challenge events. The level of cortisol produced by individuals was used as a measure of activation hypothalamic-pituitary-interrenal (HPI) axis. A significant increase in cortisol levels was detected only after the confinement stress. Interestingly, the fish exposed to a chronic stress for 18 days exhibited cortisol levels significantly lower than those of non-challenged fish. The small RNA-sequencing conducted for the chronic stress experiment only allowed us to identify two plasmatic microRNAs more abundant in non-challenged fish (miR-205-1-5p and let-7b-5p) compared to challenged fish. The miR-205-1-5p was of particular interest since it was already detected in previous studies on other fish species. In silico analysis allowed to predict potentially highly conserved mRNA targets of this specific miRNA, among which is tnfrsfa that plays a key role in the secondary stress response.


Asunto(s)
MicroARNs , Perciformes , Animales , Hidrocortisona , MicroARNs/genética , Perciformes/genética , Peces/fisiología , Acuicultura
3.
Mol Ecol ; 32(18): 5089-5109, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37526137

RESUMEN

Epigenetic modifications, like DNA methylation, generate phenotypic diversity in fish and ultimately lead to adaptive evolutionary processes. Euryhaline marine species that migrate between salinity-contrasted habitats have received little attention regarding the role of salinity on whole-genome DNA methylation. Investigation of salinity-induced DNA methylation in fish will help to better understand the potential role of this process in salinity acclimation. Using whole-genome bisulfite sequencing, we compared DNA methylation patterns in European sea bass (Dicentrarchus labrax) juveniles in seawater and after freshwater transfer. We targeted the gill as a crucial organ involved in plastic responses to environmental changes. To investigate the function of DNA methylation in gills, we performed RNAseq and assessed DNA methylome-transcriptome correlations. We showed a negative correlation between gene expression levels and DNA methylation levels in promoters, first introns and first exons. A significant effect of salinity on DNA methylation dynamics with an overall DNA hypomethylation in freshwater-transferred fish compared to seawater controls was demonstrated. This suggests a role of DNA methylation changes in salinity acclimation. Genes involved in key functions as metabolism, ion transport and transepithelial permeability (junctional complexes) were differentially methylated and expressed between salinity conditions. Expression of genes involved in mitochondrial metabolism (tricarboxylic acid cycle) was increased, whereas the expression of DNA methyltransferases 3a was repressed. This study reveals novel links between DNA methylation, mainly in promoters and first exons/introns, and gene expression patterns following salinity change.


Asunto(s)
Lubina , Salinidad , Animales , Lubina/genética , ATPasa Intercambiadora de Sodio-Potasio/genética , Branquias/fisiología , Metilación de ADN/genética , Agua de Mar , ADN
4.
Mar Biotechnol (NY) ; 25(5): 749-762, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37581865

RESUMEN

MicroRNAs (miRNAs) constitute a new category of biomarkers. Studies on miRNAs in non-mammalian species have drastically increased in the last few years. Here, we explored the use of miRNAs as potential, poorly invasive markers, to identify sex and characterize acute stress in fish. The European seabass (Dicentrarchus labrax) was chosen as a model because of its rapid response to stress and its specific sex determination system, devoid of sexual chromosomes. We performed a small RNA-sequencing analysis in the blood plasma of male and female European seabass (mature and immature) as well as in the blood plasma of juveniles submitted to an acute stress and sampled throughout the recovery period (at 0 h, 0.5 h, 1.5 h and 6 h). In immature individuals, both miR-1388-3p and miR-7132a-5p were up-regulated in females, while miR-499a-5p was more abundant in males. However, no miRNAs were found to be differentially expressed between sexes in the blood plasma of mature individuals. For the acute stress analysis, five miRNAs (miR-155-5p, miR-200a-3p, miR-205-1-5p, miR-143-3p, and miR-223-3p) followed cortisol production over time. All miRNAs identified were tested and validated by RT-qPCR on sequenced samples. A complementary analysis on the 3'UTR sequences of the European seabass allowed to predict potential mRNA targets, some of them being particularly relevant regarding stress regulation, e.g., the glucocorticoid receptor 1 and the mineralocorticoid receptor. The present study provides new avenues and recommendations on the use of miRNAs as biomarkers of sex or stress of the European seabass, with potential application on other fish species.


Asunto(s)
Lubina , MicroARN Circulante , MicroARNs , Animales , Masculino , Femenino , Lubina/genética , MicroARNs/genética , Biomarcadores , Secuencia de Bases
5.
Int J Mol Sci ; 23(21)2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36362422

RESUMEN

European sea bass (Dicentrarchus labrax) are a major aquaculture species that live in habitats with fluctuating salinities that are sometimes higher than in seawater (SW). Atlantic and West-Mediterranean genetic lineages were compared regarding intestinal neuropeptide receptor expression in SW (36%) and following a two-week transfer to hypersalinity (HW, 55%). Phylogenetic analysis revealed seven neuropeptide receptors belonging to the arginine vasotocine (AVTR) family and two isotocin receptors (ITR). Among AVTR paralogs, the highest mRNA levels were recorded for v1a2, with a two- to fourfold upregulation in the European sea bass intestinal sections after transfer of fish to HW. Principal component analysis in posterior intestines showed that v1a2 expression grouped together with the expression and activity of main ion transporters and channels involved in solute-coupled water uptake, indicating a possible role of this receptor in triggering water absorption. v1a1 expression, however, was decreased or did not change after transfer to hypersaline water. Among ITR paralogs, itr1 was the most expressed paralog in the intestine and opposite expression patterns were observed following salinity transfer, comparing intestinal sections. Overall, different expression profiles were observed between genetic lineages for several analyzed genes which could contribute to different osmotic stress-related responses in D. labrax lineages.


Asunto(s)
Lubina , Animales , Lubina/genética , Lubina/metabolismo , Filogenia , Branquias/metabolismo , Intestinos , Agua de Mar , Agua/metabolismo
6.
Fish Physiol Biochem ; 48(4): 1117-1135, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35917042

RESUMEN

In this study, we aimed to investigate the relationship between cortisol and the determination of sexual fate in the commercially important European sea bass (Dicentrarchus labrax). To test our hypothesis, we designed two temperature-based experiments (19 ℃, 21 ℃ and 23 ℃, experiment 1; 16 ℃ and 21 ℃, experiment 2) to assess the effects of these thermal treatments on European sea bass sex determination and differentiation. In the fish from the first experiment, we evaluated whether blood cortisol levels and expression of stress key regulatory genes were different between differentiating (149 to 183 dph) males and females. In the second experiment, we assessed whether cortisol accumulated in scales over time during the labile period for sex determination as well as the neuroanatomical localisation of brain cells expressing brain aromatase (cyp19a1b) and corticotropin-releasing factor (crf) differed between males and females undergoing molecular sex differentiation (117 to 124 dph). None of the gathered results allowed to detect differences between males and females regarding cortisol production and regulatory mechanisms. Altogether, our data provide strong physiological, molecular and histochemical evidence, indicating that in vivo cortisol regulation has no major effects on the sex of European sea bass.


Asunto(s)
Lubina , Animales , Lubina/fisiología , Femenino , Hidrocortisona , Masculino , Diferenciación Sexual/genética
7.
Sci Total Environ ; 804: 150208, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34798741

RESUMEN

European sea bass (Dicentrarchus labrax) migrate towards habitats where salinity can reach levels over 60‰, notably in Mediterranean lagoons. D. labrax are genetically subdivided in Atlantic and Mediterranean lineages and have evolved in slightly different salinities. We compared Atlantic and West-Mediterranean populations regarding their capacity to tolerate hypersalinity with a focus on the involvement of the intestine in solute-driven water reabsorption. Fish were analyzed following a two-week transfer from seawater (SW, 36‰) to either SW or hypersaline water (HW, 55‰). Differences among lineages were observed in posterior intestines of fish maintained in SW regarding NKA activities and mRNA expressions of nkaα1a, aqp8b, aqp1a and aqp1b with systematic higher levels in Mediterranean sea bass. High salinity transfer triggered similar responses in both lineages but at different magnitudes which may indicate slight different physiological strategies between lineages. High salinity transfer did not significantly affect the phenotypic traits measured in the anterior intestine. In the posterior intestine however, the size of enterocytes and NKA activity were higher in HW compared to SW. In this tissue, nka-α1a, nkcc2, aqp8ab and aqp8aa mRNA levels were higher in HW compared to SW as well as relative protein expression of AQP8ab. For aqp1a, 1b, 8aa and 8b, an opposite trend was observed. The sub-apical localization of AQP8ab in enterocytes suggests its role in transepithelial water reabsorption. Strong apical NKCC2/NCC staining indicates an increased Na+ and Cl- reuptake by enterocytes which could contribute to solute-coupled water reuptake in cells where AQP8ab is expressed.


Asunto(s)
Lubina , Animales , Lubina/metabolismo , Branquias/metabolismo , Intestinos , Osmorregulación , Salinidad , Agua de Mar , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
8.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34880131

RESUMEN

In most animals, sex determination occurs at conception, when sex chromosomes are segregated following Mendelian laws. However, in multiple reptiles and fishes, this genetic sex can be overridden by external factors after fertilization or birth. In some species, the genetic sex may also be governed by multiple genes, further limiting our understanding of sex determination in such species. We used the European sea bass (Dicentrarchus labrax) as a model and combined genomic (using a single nucleotide polymorphism chip) and transcriptomic (RNA-Sequencing) approaches to thoroughly depict this polygenic sex determination system and its interaction with temperature. We estimated genetic sex tendency (eGST), defined as the estimated genetic liability to become a given sex under a liability threshold model for sex determination, which accurately predicts the future phenotypic sex. We found evidence that energetic pathways, concerning the regulation of lipids and glucose, are involved in sex determination and could explain why females tend to exhibit higher energy levels and improved growth compared to males. Besides, early exposure to high-temperature up-regulated sox3, followed by sox9a in individuals with intermediate eGST, but not in individuals showing highly female-biased eGST, providing the most parsimonious explanation for temperature-induced masculinization. This gonadal state was maintained likely by DNA methylation and the up-regulation of several genes involved in histone modifications, including jmjd1c Overall, we describe a sex determination system resulting from continuous genetic and environmental influences in an animal. Our results provide significant progress in our understanding of the mechanisms underlying temperature-induced masculinization in fish.


Asunto(s)
Lubina/genética , Regulación de la Temperatura Corporal/genética , Genotipo , Herencia Multifactorial , Procesos de Determinación del Sexo/genética , Animales , Tamaño Corporal , Regulación de la Temperatura Corporal/fisiología , Metilación de ADN , Metabolismo Energético , Femenino , Regulación de la Expresión Génica , Gónadas/metabolismo , Histonas/genética , Histonas/metabolismo , Masculino , Reproducibilidad de los Resultados , Factores de Transcripción SOX/genética , Factores de Transcripción SOX/metabolismo , Temperatura
9.
J Therm Biol ; 99: 103016, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34420648

RESUMEN

Temperature and salinity are abiotic factors that affect physiological responses in aquaculture species. The European sea bass (Dicentrarchus labrax) is a temperate species that is generally farmed at 18 °C in seawater (SW). In the wild, its incursions in shallow habitats such as lagoons may result in hyperthermal damage despite its high thermal tolerance. Meanwhile, the milkfish (Chanos chanos), a tropical species, is generally reared at 28 °C, and in winter, high mortality usually occurs under hypothermal stress such as cold snaps. This study compared changes in hepatic antioxidant enzymes (superoxide dismutase, SOD; and catalase, CAT) in these two important marine euryhaline aquaculture species in Europe and Southeast Asia, respectively, under temperature challenge combined with hypo-osmotic (fresh water, FW) stress. After a four-week hyper- or hypo-thermal treatment, hepatic SOD activity was upregulated in both species reared in SW and FW, indicating enhanced oxidative stress in European sea bass and milkfish. The expression profiles of sod isoforms suggested that in milkfish, the increase in reactive oxygen species (ROS) was mainly at the cytosol level, leading to increased sod1 expression. In European sea bass, however, no obvious difference was found between the expression of sod isoforms at different temperatures. A lower expression of sod2 was observed in FW compared to SW in the latter species. Moreover, no significant change was observed in the mRNA expression and activity of CAT in the livers of these two species under the different temperature treatments, with the exception of the lower CAT activity in milkfish challenged with SW at 18 °C. Taken together, our results indicated that the antioxidant responses were not changed under long-term hypoosmotic challenge but were enhanced during the four-week temperature treatments in livers of both the temperate and tropical euryhaline species.


Asunto(s)
Antioxidantes/metabolismo , Lubina/metabolismo , Hígado/metabolismo , Salinidad , Temperatura , Animales , Acuicultura , Estrés Oxidativo , Especies Reactivas de Oxígeno , Agua de Mar , Estrés Fisiológico , Superóxido Dismutasa/metabolismo
10.
Gene ; 741: 144547, 2020 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-32165299

RESUMEN

Acclimation to low salinities is a vital physiological challenge for euryhaline fish as the European sea bass Dicentrarchus labrax. This species undertakes seasonal migrations towards lagoons and estuaries where a wide range of salinity variations occur along the year. We have previously reported intraspecific differences in freshwater tolerance, with an average 30% mortality rate. In this study, we bring new evidence of mechanisms underlying freshwater tolerance in sea bass at gill and kidney levels. In fresh water (FW), intraspecific differences in mRNA expression levels of several ion transporters and prolactin receptors were measured. We showed that the branchial Cl-/HCO3- anion transporter (slc26a6c) was over-expressed in freshwater intolerant fish, probably as a compensatory response to low blood chloride levels and potential metabolic alkalosis. Moreover, prolactin receptor a (prlra) and Na+/Cl- cotransporter (ncc1) but not ncc-2a expression seemed to be slightly increased and highly variable between individuals in freshwater intolerant fish. In the posterior kidney, freshwater intolerant fish exhibited differential expression levels of slc26 anion transporters and Na+/K+/2Cl- cotransporter 1b (nkcc1b). Lower expression levels of prolactin receptors (prlra, prlrb) were measured in posterior kidney which probably contributes to the failure in ion reuptake at the kidney level. Freshwater intolerance seems to be a consequence of renal failure of ion reabsorption, which is not sufficiently compensated at the branchial level.


Asunto(s)
Lubina/genética , Branquias/metabolismo , Riñón/metabolismo , Miembro 1 de la Familia de Transportadores de Soluto 12/genética , Aclimatación/genética , Animales , Lubina/crecimiento & desarrollo , Agua Dulce , Regulación de la Expresión Génica/genética , Branquias/fisiología , Transporte Iónico/genética , Riñón/fisiología , Osmorregulación/genética , Salinidad , Agua de Mar , Sodio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/genética
11.
Ecol Evol ; 10(24): 13825-13835, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33391683

RESUMEN

Temperature-dependent sex determination (TSD) can be observed in multiple reptile and fish species. It is adaptive when varying environmental conditions advantage either males or females. A good knowledge of the thermosensitive period is key to understand how environmental changes may lead to changes in population sex ratio. Here, by manipulating temperature during development, we confirm that cold temperature (16°C) increases the proportion of fish that develop as females in European sea bass (Dicentrarchus labrax) until 56 days posthatching, but show that it has an opposite effect at later stages, with the proportion of males reaching ~90% after 230 days at 16°C. This is the first observation of opposite effects of temperature at different time periods on the sex ratio of a vertebrate. Our results highlight the potential complexity of environmental effects on sex determination.

12.
J Therm Biol ; 85: 102422, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31657763

RESUMEN

The responses of European sea bass to temperature increase and salinity decrease were investigated measuring mRNA expression levels of main genes involved in ion transport. Juvenile fish were pre-acclimated to seawater (SW) at 18 °C (temperate) or 24 °C (warm) for two weeks and then transferred for two weeks to either fresh water (FW) or SW at the respective temperature. Unlike temperate conditions, there is no change in Na+/K+-ATPase α1a (nka α1a) and Na+/H+ exchanger 3 (nhe3) mRNA expression following FW transfer in warm conditions. This is linked to the high expression of these genes in warm SW compared to temperate SW. Na+/Cl--cotransporter (ncc2a) expression however is increased following FW transfer in temperate and warm conditions. Main transporters involved in ion excretion (Na+/K+/2Cl--1 cotransporter, nkcc1 and cystic fibrosis transmembrane conductance regulator, cftr) as well as nitrogen excretion (Rh-glycoproteins, rhcg1 and rhbg) and acid-base regulation (V-H+-ATPase, vha-a and b) are highly expressed in SW warm conditions vs FW warm. Overall, our results suggest a higher activation of ion transport processes in warm conditions and more strikingly in SW. This is linked to a strong interplay between diverse ion transporters in order to coordinate physiological responses at the gill level.


Asunto(s)
Lubina/genética , Branquias/metabolismo , Proteínas de Transporte de Membrana/genética , Salinidad , Temperatura , Animales , Agua Dulce , Regulación de la Expresión Génica , Transporte Iónico , Agua de Mar
14.
Gene ; 692: 126-137, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30641214

RESUMEN

Ion uptake mechanisms are diverse in fish species, certainly linked to duplication events that have led to the presence of a multitude of paralogous genes. In fish, Na+ uptake involves several ion transporters expressed in different ionocyte subtypes. In the European sea bass Dicentrarchus labrax, several key transporters potentially involved in Na+ uptake have been investigated in seawater (SW) and following a 2 weeks freshwater (FW) acclimation. Using gel electrophoresis, we have shown that the Na+/H+-exchanger 3 (nhe3, slc9a3) is expressed in gills and kidney at both salinities. Quantitative realtime PCR analysis showed a significantly higher nhe3 expression in fresh water (FW) compared to SW. Its apical localization in a subset of gill ionocytes in freshwater-acclimated fish supports the role of NHE3 in Na+ uptake. Interestingly, NHE3-immunopositive cells also express basolateral Na+/K+/2Cl- cotransporter 1 (NKCC1) and are mainly localized in gill lamella. Among the three nhe2 (slc9a2) paralogs, only nhe2c shows differential branchial expression levels with higher mRNA levels in SW than in FW. The increased branchial expression of the ammonia transporter rhcg1 (Rhesus protein), nhe3 and cytoplasmic carbonic anhydrase (cac) in FW could indicate the presence of a functional coupling between ion transporters to form a Na+/NH4+ exchange complex. Acid-sensing ion channel 4 (asic4) seems not to be expressed in sea bass gills. Na+/Cl- cotransporter (ncc2a or ncc-like) is about three times more expressed in FW compared to SW suggesting coupled Na+ and Cl- uptake in a subset of gill ionocytes. Besides the main pump Na+/K+-ATPase, branchial NCC2a and NHE3 may be key players in ion uptake in sea bass following a long-term freshwater challenge.


Asunto(s)
Lubina/metabolismo , Proteínas de Peces/genética , Transporte Iónico/fisiología , Intercambiadores de Sodio-Hidrógeno/genética , Aclimatación , Animales , Lubina/genética , Proteínas de Peces/metabolismo , Agua Dulce , Regulación de la Expresión Génica , Branquias/fisiología , Osmorregulación/genética , Filogenia , Sodio/metabolismo , Sodio/farmacocinética , Intercambiadores de Sodio-Hidrógeno/metabolismo
15.
Redox Biol ; 10: 53-64, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27689738

RESUMEN

In the context of global change, there is an urgent need for researchers in conservation physiology to understand the physiological mechanisms leading to the acquisition of stress acclimation phenotypes. Intertidal organisms continuously cope with drastic changes in their environmental conditions, making them outstanding models for the study of physiological acclimation. As the implementation of such processes usually comes at a high bioenergetic cost, a mitochondrial/oxidative stress approach emerges as the most relevant approach when seeking to analyze whole-animal responses. Here we use the intertidal flatworm Macrostomum lignano to analyze the bioenergetics of salinity acclimation and its consequences in terms of reactive oxygen/nitrogen species formation and physiological response to counteract redox imbalance. Measures of water fluxes and body volume suggest that M. lignano is a hyper-/iso-regulator. Higher salinities were revealed to be the most energetically expensive conditions, with an increase in mitochondrial density accompanied by increased respiration rates. Such modifications came at the price of enhanced superoxide anion production, likely associated with a high caspase 3 upregulation. These animals nevertheless managed to live at high levels of environmental salinity through the upregulation of several mitochondrial antioxidant enzymes such as superoxide dismutase. Contrarily, animals at low salinities decreased their respiration rates, reduced their activity and increased nitric oxide formation, suggesting a certain degree of metabolic arrest. A contradictory increase in dichlorofluorescein fluorescence and an upregulation of gluthathione-S-transferase pi 1 (GSTP1) expression were observed in these individuals. If animals at low salinity are indeed facing metabolic depression, the return to seawater may result in an oxidative burst. We hypothesize that this increase in GSTP1 could be a "preparation for oxidative stress", i.e. a mechanism to counteract the production of free radicals upon returning to seawater. The results of the present study shed new light on how tolerant organisms carry out subcellular adaptations to withstand environmental change.


Asunto(s)
Platelmintos/crecimiento & desarrollo , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico , Adaptación Fisiológica , Animales , Caspasa 3/metabolismo , Metabolismo Energético , Gutatión-S-Transferasa pi , Mitocondrias/metabolismo , Oxidación-Reducción , Platelmintos/metabolismo , Salinidad , Regulación hacia Arriba
16.
Fish Physiol Biochem ; 42(6): 1647-1664, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27289588

RESUMEN

The Na+/K+-ATPase (NKA) is considered as the main pump involved in active ion transport. In the European sea bass, Dicentrarchus labrax, we found two genes encoding for the alpha 1 subunit isoforms (NKA α1a and NKA α1b). NKA α1a and NKA α1b isoform amino acid (aa) sequences were compared through phylogeny and regarding key functional motifs between salmonids and other acanthomorph species. Analysis of aa sequences of both isoforms revealed a high degree of conservation across teleosts. The expression pattern of both nka α1a and nka α1b was measured in the gill, kidney and posterior intestine of fish in seawater (SW) and transferred to fresh water (FW) at different exposure times. Nka α1a was more expressed than nka α1b whatever the condition and the tissue analyzed. After long-term salinity acclimation (2.5 years) either in FW or SW, transcript levels of nka α1a were higher in the kidney followed by the posterior intestine and the gill. Compared to SW conditions, expression of nka α1a in FW was significantly increased or decreased, respectively, in gill and posterior intestine. In contrast, branchial nka α1b was significantly decreased in FW-acclimated fish. Short-term FW acclimation seems to rapidly increase nka α1a transcript levels in the kidney unlike in gill tissues where different gene expression levels are detected only after long-term acclimation.


Asunto(s)
Lubina/genética , Proteínas de Peces/genética , Osmorregulación/genética , ATPasa Intercambiadora de Sodio-Potasio/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Lubina/fisiología , Clonación Molecular , ADN Complementario/genética , Branquias/metabolismo , Mucosa Intestinal/metabolismo , Riñón/metabolismo , Filogenia , Isoformas de Proteínas/genética , Salinidad
17.
Physiol Biochem Zool ; 89(3): 233-50, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27153133

RESUMEN

The copepod Eurytemora affinis has an unusually broad salinity range, as some populations have recently invaded freshwater habitats independently from their ancestral saline habitats. Prior studies have shown evolutionary shifts in ion transporter activity during freshwater invasions and localization of ion transporters in newly discovered "Crusalis organs" in the swimming legs. The goals of this study were to localize and quantify expression of ion transport enzymes V-type H(+)-ATPase (VHA) and Na(+)/K(+)-ATPase (NKA) in the swimming legs of E. affinis and determine the degree of involvement of each leg in ionic regulation. We confirmed the presence of two distinct types of ionocytes in the Crusalis organs. Both cell types expressed VHA and NKA, and in the freshwater population the location of VHA and NKA in ionocytes was, respectively, apical and basal. Quantification of in situ expression of NKA and VHA established the predominance of swimming leg pairs 3 and 4 in ion transport in both saline and freshwater populations. Increases in VHA expression in swimming legs 3 and 4 of the freshwater population (in fresh water) relative to the saline population (at 15 PSU) arose from an increase in the abundance of VHA per cell rather than an increase in the number of ionocytes. This result suggests a simple mechanism for increasing ion uptake in fresh water. In contrast, the decline in NKA expression in the freshwater population arose from a decrease in ionocyte area in legs 4, likely resulting from decreases in number or size of ionocytes containing NKA. Such results provide insights into mechanisms of ionic regulation for this species, with added insights into evolutionary mechanisms underlying physiological adaptation during habitat invasions.


Asunto(s)
Copépodos/enzimología , Extremidades/fisiología , Osmorregulación/fisiología , ATPasas de Translocación de Protón/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Copépodos/fisiología , Femenino , Regulación Enzimológica de la Expresión Génica/fisiología , Masculino , ATPasas de Translocación de Protón/genética , Salinidad , ATPasa Intercambiadora de Sodio-Potasio/genética , Equilibrio Hidroelectrolítico
18.
J Comp Physiol B ; 183(5): 641-62, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23292336

RESUMEN

Dicentrarchus labrax migrates between sea (SW), brackish and fresh water (FW) where chloride concentrations and requirements for chloride handling change: in FW, fish absorb chloride and restrict renal losses; in SW, they excrete chloride. In this study, the expression and localization of ClC-3 and Na(+)/K(+)-ATPase (NKA) were studied in fish adapted to SW, or exposed to FW from 10 min to 30 days. In gills, NKA-α1 subunit expression transiently increased from 10 min and reached a stabilized intermediate expression level after 24 h in FW. ClC-3 co-localized with NKA in the basolateral membrane of mitochondria-rich cells (MRCs) at all conditions. The intensity of MRC ClC-3 immunostaining was significantly higher (by 50 %) 1 h after the transfer to FW, whereas the branchial ClC-3 protein expression was 30 % higher 7 days after the transfer as compared to SW. This is consistent with the increased number of immunopositive MRCs (immunostained for NKA and ClC-3). However, the ClC-3 mRNA expression was significantly lower in FW gills. In the kidney, after FW transfer, a transient decrease in NKA-α1 subunit expression was followed by significantly higher stable levels from 24 h. The low ClC-3 protein expression detected at both salinities was not observed by immunocytochemistry in the SW kidney; ClC-3 was localized in the basal membrane of the collecting ducts and tubules 7 and 30 days after transfer to FW. Renal ClC-3 mRNA expression, however, seemed higher in SW than in FW. The potential role of this chloride channel ClC-3 in osmoregulatory and osmosensing mechanisms is discussed.


Asunto(s)
Lubina/metabolismo , Canales de Cloruro/metabolismo , Proteínas de Peces/metabolismo , Equilibrio Hidroelectrolítico , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Lubina/genética , Encéfalo/metabolismo , Canales de Cloruro/genética , Proteínas de Peces/genética , Agua Dulce , Branquias/metabolismo , Riñón/metabolismo , Datos de Secuencia Molecular , ARN Mensajero/metabolismo , Agua de Mar , Análisis de Secuencia de ADN , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
19.
Aquat Toxicol ; 130-131: 41-50, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23340332

RESUMEN

The European eel (Anguilla anguilla), a catadromous species, breeds in the sea and migrates to estuarine, lagoon or freshwater habitats for growth and development. Yellow eels, exposed to low or fluctuating salinities, are also exposed to multiple other stressors as pollution, over-fishing and parasitism, which contribute to the dramatic decrease of eel populations in several European countries. The objective of this study was to evaluate the single and combined effects of waterborne copper and experimental infestation of eels with the nematode Anguillicoloides crassus after a salinity challenge from nearly isotonic (18ppt) to hypo- (5ppt) and hypertonic (29ppt) conditions, in order to investigate the osmoregulatory capacity of eels exposed to these stressors. In a nearly isotonic condition (18ppt), blood osmolality remained constant over the 6 weeks contamination to Cu(2+) and Anguillicoloides crassus. In fish exposed to a salinity challenge of 29ppt for 2 weeks, no significant effect was recorded in blood osmolality, Na(+)/K(+)-ATPase (NKA) activity, Na(+) and Cl(-) concentrations. After 2 weeks at 5ppt however, a significant blood osmolality decrease was detected in fish exposed to Anguillicoloides crassus infestation with or without Cu(2+) addition. This decrease may originate from lower Cl(-) levels measured in eels exposed to both stressors. Blood Na(+) levels remained relatively stable in all tested animals, but gill NKA activities were lower in eels exposed to combined stress. No apparent branchial lesions were detected following the different treatments and immunolocalization of NKA revealed well-differentiated ionocytes. Thus, the 5ppt challenge in eels exposed to copper and Anguillicoloides crassus seems to clearly enhance iono/osmoregulatory disturbances. Funded by ANR CES/CIEL 2008-12.


Asunto(s)
Anguilla/metabolismo , Anguilla/parasitología , Cobre/toxicidad , Dracunculoidea/fisiología , Exposición a Riesgos Ambientales , Contaminantes Químicos del Agua/toxicidad , Equilibrio Hidroelectrolítico , Anguilla/sangre , Animales , Sangre/efectos de los fármacos , Francia , Branquias/efectos de los fármacos , Branquias/enzimología , Osmometria , Presión Osmótica , Distribución Aleatoria , Equilibrio Hidroelectrolítico/efectos de los fármacos
20.
Artículo en Inglés | MEDLINE | ID: mdl-20601051

RESUMEN

The gilthead sea bream, Sparus aurata, is a euryhaline teleost that hatches in the open sea. The larvae drift to the coast and juveniles migrate into estuaries and lagoons where the salinity of the water may vary from brackish to hyper-saline. The ontogeny of osmoregulation in Sparus aurata was studied at successive stages, from day 1 (D1) post-hatch to the late juvenile stage (D300) after exposure to different salinities ranging from fresh water to 45.1 per thousand, at 18 degrees C. Survival ranged from between 5.1 and 39.1 per thousand at D3, and from 1.0 to 45.1 per thousand from D75. The fish were hyper-hypo-osmotic regulators at all studied stages. The acquisition of the full ability to hypo- and hyper-regulate occurred in four steps. The osmoregulatory capacity appeared age-dependent and reached its maximum level after D96, and the localization of ionocytes in the integument and gills occurred concurrently during development of the sea bream. However, the main site of osmoregulation shifted from the integument to the gills from D30 to D70, with a corresponding sharp increase in the osmoregulatory ability. Our results suggest that the early development of osmoregulatory ability, and thus of salinity tolerance in the sea bream may provide an advantageous flexibility for the timing of the migration between sea and estuaries and lagoons.


Asunto(s)
Adaptación Fisiológica , Salinidad , Dorada/fisiología , Equilibrio Hidroelectrolítico/fisiología , Animales , Agua Dulce , Branquias/fisiología , Larva/fisiología , Concentración Osmolar , Tolerancia a la Sal/fisiología , Dorada/crecimiento & desarrollo , Agua de Mar , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...