Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Drug Discov Today ; 29(6): 104015, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38719143

RESUMEN

Chronic hypoxia-induced pulmonary hypertension (CHPH) presents a complex challenge, characterized by escalating pulmonary vascular resistance and remodeling, threatening both newborns and adults with right heart failure. Despite advances in understanding the pathobiology of CHPH, its molecular intricacies remain elusive, particularly because of the multifaceted nature of arterial remodeling involving the adventitia, media, and intima. Cellular imbalance arises from hypoxia-induced mitochondrial disturbances and oxidative stress, reflecting the diversity in pulmonary hypertension (PH) pathology. In this review, we highlight prominent mechanisms causing CHPH in adults and newborns, and emerging therapeutic targets of potential pharmaceuticals.


Asunto(s)
Desarrollo de Medicamentos , Hipertensión Pulmonar , Hipoxia , Humanos , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/fisiopatología , Hipertensión Pulmonar/etiología , Hipoxia/complicaciones , Desarrollo de Medicamentos/métodos , Recién Nacido , Animales , Adulto , Estrés Oxidativo/efectos de los fármacos
2.
Adv Sci (Weinh) ; : e2305866, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38685626

RESUMEN

Although the gasotransmitter hydrogen sulfide (H2S) is well known for its vasodilatory effects, H2S also exhibits vasoconstricting properties. Herein, it is demonstrated that administration of H2S as intravenous sodium sulfide (Na2S) increased blood pressure in sheep and rats, and this effect persisted after H2S has disappeared from the blood. Inhibition of the L-type calcium channel (LTCC) diminished the hypertensive effects. Incubation of Na2S with whole blood, red blood cells, methemoglobin, or oxyhemoglobin produced a hypertensive product of H2S, which is not hydrogen thioperoxide, metHb-SH- complexes, per-/poly- sulfides, or thiolsulfate, but rather a labile intermediate. One-electron oxidation of H2S by oxyhemoglobin generated its redox cousin, sulfhydryl radical (HS•). Consistent with the role of HS• as the hypertensive intermediate, scavenging HS• inhibited Na2S-induced vasoconstriction and activation of LTCCs. In conclusion, H2S causes vasoconstriction that is dependent on the activation of LTCCs and generation of HS• by oxyhemoglobin.

3.
Antioxidants (Basel) ; 12(9)2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37759975

RESUMEN

We recently developed a combination of four chemiluminescence-based assays for selective detection of different nitric oxide (NO) metabolites, including nitrite, S-nitrosothiols (SNOs), heme-nitrosyl (heme-NO), and dinitrosyl iron complexes (DNICs). However, these NO species (NOx) may be under dynamic equilibria during sample handling, which affects the final determination made from the readout of assays. Using fetal and maternal sheep from low and high altitudes (300 and 3801 m, respectively) as models of different NOx levels and compositions, we tested the hypothesis that sample handling introduces artifacts in chemiluminescence assays of NOx. Here, we demonstrate the following: (1) room temperature placement is associated with an increase and decrease in NOx in plasma and whole blood samples, respectively; (2) snap freezing and thawing lead to the interconversion of different NOx in plasma; (3) snap freezing and homogenization in liquid nitrogen eliminate a significant fraction of NOx in the aorta of stressed animals; (4) A "stop solution" commonly used to preserve nitrite and SNOs leads to the interconversion of different NOx in blood, while deproteinization results in a significant increase in detectable NOx; (5) some reagents widely used in sample pretreatments, such as mercury chloride, acid sulfanilamide, N-ethylmaleimide, ferricyanide, and anticoagulant ethylenediaminetetraacetic acid, have unintended effects that destabilize SNO, DNICs, and/or heme-NO; (6) blood, including the residual blood clot left in the washed purge vessel, quenches the signal of nitrite when using ascorbic acid and acetic acid as the purge vessel reagent; and (7) new limitations to the four chemiluminescence-based assays. This study points out the need for re-evaluation of previous chemiluminescence measurements of NOx, and calls for special attention to be paid to sample handling, as it can introduce significant artifacts into NOx assays.

4.
Int J Mol Sci ; 24(11)2023 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-37298681

RESUMEN

Intracellular Ca2+ signals are key for the regulation of cellular processes ranging from myocyte contraction, hormonal secretion, neural transmission, cellular metabolism, transcriptional regulation, and cell proliferation. Measurement of cellular Ca2+ is routinely performed using fluorescence microscopy with biological indicators. Analysis of deterministic signals is reasonably straightforward as relevant data can be discriminated based on the timing of cellular responses. However, analysis of stochastic, slower oscillatory events, as well as rapid subcellular Ca2+ responses, takes considerable time and effort which often includes visual analysis by trained investigators, especially when studying signals arising from cells embedded in complex tissues. The purpose of the current study was to determine if full-frame time-series and line-scan image analysis workflow of Fluo-4 generated Ca2+ fluorescence data from vascular myocytes could be automated without introducing errors. This evaluation was addressed by re-analyzing a published "gold standard" full-frame time-series dataset through visual analysis of Ca2+ signals from recordings made in pulmonary arterial myocytes of en face arterial preparations. We applied a combination of data driven and statistical approaches with comparisons to our published data to assess the fidelity of the various approaches. Regions of interest with Ca2+ oscillations were detected automatically post hoc using the LCPro plug-in for ImageJ. Oscillatory signals were separated based on event durations between 4 and 40 s. These data were filtered based on cutoffs obtained from multiple methods and compared to the published manually curated "gold standard" dataset. Subcellular focal and rapid Ca2+ "spark" events from line-scan recordings were examined using SparkLab 5.8, which is a custom automated detection and analysis program. After filtering, the number of true positives, false positives, and false negatives were calculated through comparisons to visually derived "gold standard" datasets. Positive predictive value, sensitivity, and false discovery rates were calculated. There were very few significant differences between the automated and manually curated results with respect to quality of the oscillatory and Ca2+ spark events, and there were no systematic biases in the data curation or filtering techniques. The lack of statistical difference in event quality between manual data curation and statistically derived critical cutoff techniques leads us to believe that automated analysis techniques can be reliably used to analyze spatial and temporal aspects to Ca2+ imaging data, which will improve experiment workflow.


Asunto(s)
Señalización del Calcio , Miocitos Cardíacos , Flujo de Trabajo , Miocitos Cardíacos/metabolismo , Contracción Muscular , Procesamiento de Imagen Asistido por Computador , Calcio/metabolismo
5.
Tissue Eng Part A ; 29(13-14): 358-371, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37071180

RESUMEN

Surgical implantation of decellularized cadaveric arteries is routinely used to treat right-sided congenital cardiac lesions. These acellular conduits lack the capacity for somatic growth and are prone to stenosis and calcification, necessitating multiple operations throughout childhood. Islet-1+ cardiovascular progenitor cells (CPCs) have demonstrated the capacity for differentiation into all cell types of the heart and outflow tracts. We hypothesize that CPC seeding of decellularized pulmonary arteries and bioreactor culture under physiologic flow conditions will drive vascular differentiation of CPCs and result in a conduit more suitable for implantation and long-term growth. We began by decellularizing ovine pulmonary arteries and characterizing the composition of the extracellular matrix (ECM). Hemodynamic testing of decellularized vessels in a custom bioreactor was used to define the scaffold mechanical properties over a range of pressures and flow rates. Next, our expanded ovine CPCs were suspended in growth media and injected intramurally into decellularized pulmonary arteries that were subsequently cultured in either static or pulsatile cultures. A combination of immunohistochemistry, real-time polymerase chain reaction (PCR), and tissue bath contraction studies were used to evaluate the bioengineered arteries before transplantation. Pulmonary artery patches from the most favorable culture conditions were then implanted into juvenile sheep to provide proof of concept. Hematoxylin and eosin staining indicated complete removal of cell nuclei (n = 9), whereas double-stranded DNA isolation from tissue homogenates showed 99.1% DNA removal (p < 0.01, n = 4). Furthermore, trichrome and elastin staining verified maintenance of collagen and elastin. Immunohistochemistry and PCR analyses (n = 4 per group) confirmed contractile smooth muscle presence on only our 3-week pulsatile scaffolds via presence of calponin 1 and myosin heavy chain 11. Tissue bath studies demonstrated that smooth muscle contraction generated by our 3-week pulsatile scaffolds (2.23 ± 0.19 g, n = 4) is comparable with native tissue contraction strength (2.78 ± 0.06 g, n = 4). Ovine transplantation confirmed that our graft can be safely implanted, retains contractile smooth muscle cells, and recruits native endothelium. Longer duration of physiologic pulsatile culture drives differentiation of CPCs seeded on ECM conduits toward a mature, contractile phenotype that is maintained for several weeks in vivo. Longer term studies to assess somatic growth potential are needed. Impact statement The current field of vascular transplantation relies on cadaveric and synthetic grafts to treat right-sided congenital cardiac lesions. These grafts do not grow somatically with our patients. This results in multiple reoperations throughout childhood to increase the size of the graft. Our bioengineered alternative demonstrates successful implantation, contractile smooth muscle cells, and a native endothelial layer. This research demonstrates a pilot study confirming the viability of a bioengineered alternative to the current standard of care in the field of vascular transplantation.


Asunto(s)
Elastina , Ingeniería de Tejidos , Ovinos , Animales , Ingeniería de Tejidos/métodos , Biomimética , Flujo Pulsátil , Proyectos Piloto , Células Cultivadas , Prótesis Vascular , Contracción Muscular , Cadáver , Andamios del Tejido
6.
J Physiol ; 601(8): 1501-1514, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36856073

RESUMEN

Hypoxia during pregnancy impairs uterine vascular adaptation via microRNA-210 (miR-210)-mediated mitochondrial dysfunction and mitochondrial reactive oxygen species (mtROS) generation. TET methylcytosine dioxygenase 2 (TET2) participates in regulating inflammation and oxidative stress and its deficiency contributes to the pathogenesis of multiple cardiovascular diseases. Thus, we hypothesize a role of TET2 in hypoxia/miR-210-mediated mtROS suppressing spontaneous transient outward currents (STOCs) in uterine arteries. We found that gestational hypoxia downregulated TET2 in uterine arteries of pregnant sheep and TET2 was a target of miR-210. Knockdown of TET2 with small interfering RNAs suppressed mitochondrial respiration, increased mtROS, inhibited STOCs and elevated myogenic tone. By contrast, overexpression of TET2 negated hypoxia- and miR-210-induced mtROS. The effects of TET2 knockdown in uterine arteries on mtROS, STOCs and myogenic contractions were blocked by the mitochondria-targeted antioxidant MitoQ. In addition, the recovery effects of inhibiting endogenous miR-210 with miR-210-LNA on hypoxia-induced suppression of STOCs and augmentation of myogenic tone were reversed by TET2 knockdown in uterine arteries. Together, our study reveals a novel mechanistic link between the miR-210-TET2-mtROS pathway and inhibition of STOCs and provides new insights into the understanding of uterine vascular maladaptation in pregnancy complications associated with gestational hypoxia. KEY POINTS: Gestational hypoxia downregulates TET methylcytosine dioxygenase 2 (TET2) in uterine arteries of pregnant sheep. TET2 is a downstream target of microRNA-210 (miR-210) and miR-210 mediates hypoxia-induced TET2 downregulation. Knockdown of TET2 in uterine arteries recapitulates the effect of hypoxia and miR-210 and impairs mitochondrial bioenergetics and increases mitochondrial reactive oxygen species (mtROS) . Overexpression of TET2 negates the effect of hypoxia and miR-210 on increasing mtROS. TET2 knockdown reiterates the effect of hypoxia and miR-210 and suppresses spontaneous transient outward currents (STOCs) and elevates myogenic tone, and these effects are blocked by MitoQ. Knockdown of TET2 reverses the miR-210-LNA-induced reversal of the effects of hypoxia on STOCs and myogenic tone in uterine arteries.


Asunto(s)
Dioxigenasas , MicroARNs , Embarazo , Femenino , Animales , Ovinos , Arteria Uterina/fisiología , Especies Reactivas de Oxígeno/metabolismo , Hipoxia , MicroARNs/genética , MicroARNs/metabolismo , Dioxigenasas/metabolismo , Dioxigenasas/farmacología
7.
Int J Mol Sci ; 24(6)2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36982960

RESUMEN

Nitric oxide (NO) is a gasotransmitter that avidly binds both free and heme-bound iron, forming relatively stable iron nitrosyl compounds (FeNOs). We have previously demonstrated that FeNOs are present in the human placenta and are elevated in preeclampsia and intrauterine growth restriction. The ability of NO to sequester iron raises the possibility of the NO-mediated disruption of iron homeostasis in the placenta. In this work, we tested whether exposure of placental syncytiotrophoblasts or villous tissue explants to sub-cytotoxic concentrations of NO would elicit the formation of FeNOs. Furthermore, we measured changes in the mRNA and protein expression levels of key iron regulatory genes in response to NO exposure. Ozone-based chemiluminescence was used to measure concentrations of NO and its metabolites. Our results showed a significant increase in FeNO levels in placental cells and explants treated with NO (p < 0.0001). The mRNA and protein levels of HO-1 were significantly increased in both cultured syncytiotrophoblasts and villous tissue explants (p < 0.01), and the mRNA levels of hepcidin and transferrin receptor were significantly increased in culture syncytiotrophoblasts and villous tissue explants, respectively, (p < 0.01), while no changes were seen in the expression levels of divalent metal transporter-1 or ferroportin. These results suggest a potential role for NO in iron homeostasis in the human placenta and could be relevant for disorders of pregnancy such as fetal growth restriction and preeclampsia.


Asunto(s)
Placenta , Preeclampsia , Embarazo , Femenino , Humanos , Placenta/metabolismo , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Transferrina/metabolismo , Hepcidinas/genética , Hepcidinas/metabolismo , Óxido Nítrico/metabolismo , Preeclampsia/metabolismo , Receptores de Transferrina/genética , Receptores de Transferrina/metabolismo , Hierro/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
8.
Antioxidants (Basel) ; 11(9)2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36139895

RESUMEN

The mammalian fetus thrives at oxygen tensions much lower than those of adults. Gestation at high altitude superimposes hypoxic stresses on the fetus resulting in increased erythropoiesis. We hypothesized that chronic hypoxia at high altitude alters the homeostasis of iron and bioactive nitric oxide metabolites (NOx) in gestation. To test for this, electron paramagnetic resonance was used to provide unique measurements of iron, metalloproteins, and free radicals in the blood and aorta of fetal and maternal sheep from either high or low altitudes (3801 or 300 m). Using ozone-based chemiluminescence with selectivity for various NOx species, we determined the NOx levels in these samples immediately after collection. These experiments demonstrated a systemic redistribution of iron in high altitude fetuses as manifested by a decrease in both chelatable and total iron in the aorta and an increase in non-transferrin bound iron and total iron in plasma. Likewise, high altitude altered the redox status diversely in fetal blood and aorta. This study also found significant increases in blood and aortic tissue NOx in fetuses and mothers at high altitude. In addition, gradients in NOx concentrations observed between fetus and mother, umbilical artery and vein, and plasma and RBCs demonstrated complex dynamic homeostasis of NOx among these circulatory compartments, such as placental generation and efflux as well as fetal consumption of iron-nitrosyls in RBCs, probably HbNO. In conclusion, these results may suggest the utilization of iron from non-hematopoietic tissues iron for erythropoiesis in the fetus and increased NO bioavailability in response to chronic hypoxic stress at high altitude during gestation.

9.
Front Physiol ; 13: 885295, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36035495

RESUMEN

The ability to respond rapidly to changes in oxygen tension is critical for many forms of life. Challenges to oxygen homeostasis, specifically in the contexts of evolutionary biology and biomedicine, provide important insights into mechanisms of hypoxia adaptation and tolerance. Here we synthesize findings across varying time domains of hypoxia in terms of oxygen delivery, ranging from early animal to modern human evolution and examine the potential impacts of environmental and clinical challenges through emerging multi-omics approaches. We discuss how diverse animal species have adapted to hypoxic environments, how humans vary in their responses to hypoxia (i.e., in the context of high-altitude exposure, cardiopulmonary disease, and sleep apnea), and how findings from each of these fields inform the other and lead to promising new directions in basic and clinical hypoxia research.

10.
Br J Pharmacol ; 179(19): 4640-4654, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35776536

RESUMEN

BACKGROUND AND PURPOSE: Hypoxia during pregnancy is associated with increased uterine vascular resistance and elevated blood pressure both in women and female sheep. A previous study demonstrated a causal role of microRNA-210 (miR-210) in gestational hypoxia-induced suppression of Ca2+ sparks/spontaneous transient outward currents (STOCs) in ovine uterine arteries, but the underlying mechanisms remain undetermined. We tested the hypothesis that miR-210 perturbs mitochondrial metabolism and increases mitochondrial reactive oxygen species (mtROS) that confer hypoxia-induced suppression of STOCs in uterine arteries. EXPERIMENTAL APPROACH: Resistance-sized uterine arteries were isolated from near-term pregnant sheep and were treated ex vivo in normoxia and hypoxia (10.5% O2 ) for 48 h. KEY RESULTS: Hypoxia increased mtROS and suppressed mitochondrial respiration in uterine arteries, which were also produced by miR-210 mimic to normoxic arteries and blocked by antagomir miR-210-LNA in hypoxic arteries. Hypoxia or miR-210 mimic inhibited Ca2+ sparks/STOCs and increased uterine arterial myogenic tone, which were inhibited by the mitochondria-targeted antioxidant MitoQ. Hypoxia and miR-210 down-regulated iron-sulfur cluster scaffold protein (ISCU) in uterine arteries and knockdown of ISCU via siRNAs suppressed mitochondrial respiration, increased mtROS, and inhibited STOCs. In addition, blockade of mitochondrial electron transport chain with antimycin and rotenone inhibited large-conductance Ca2+ -activated K+ channels, decreased STOCs and increased uterine arterial myogenic tone. CONCLUSION AND IMPLICATIONS: This study demonstrates a novel mechanistic role for the miR-210-ISCU-mtROS axis in inhibiting Ca2+ sparks/STOCs in the maladaptation of uterine arteries and provides new insights into the understanding of mitochondrial perturbations in the pathogenesis of pregnancy complications resulted from hypoxia.


Asunto(s)
MicroARNs , Arteria Uterina , Animales , Femenino , Humanos , Hipoxia/metabolismo , MicroARNs/metabolismo , Embarazo , Especies Reactivas de Oxígeno/metabolismo , Ovinos , Arteria Uterina/metabolismo
11.
J Biol Chem ; 298(7): 102078, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35643317

RESUMEN

Placental nitric oxide (NO) is critical for maintaining perfusion in the maternal-fetal-placental circulation during normal pregnancy. NO and its many metabolites are also increased in pregnancies complicated by maternal inflammation such as preeclampsia, fetal growth restriction, gestational diabetes, and bacterial infection. However, it is unclear how increased levels of NO or its metabolites affect placental function or how the placenta deals with excessive levels of NO or its metabolites. Since there is uncertainty over the direction of change in plasma levels of NO metabolites in preeclampsia, we measured the levels of these metabolites at the placental tissue level. We found that NO metabolites are increased in placentas from patients with preeclampsia compared to healthy controls. We also discovered by ozone-based chemiluminescence and electron paramagnetic resonance that nitrite is efficiently converted into iron nitrosyl complexes (FeNOs) within the human placenta and also observed the existence of endogenous FeNOs within placentas from sheep and rats. We show these nitrite-derived FeNOs are relatively short-lived, predominantly protein-bound, heme-FeNOs. The efficient formation of FeNOs from nitrite in the human placenta hints toward the importance of both nitrite and FeNOs in placental physiology or pathology. As iron nitrosylation is an important posttranslational modification that affects the activity of multiple iron-containing proteins such as those in the electron transport chain, or those involved in epigenetic regulation, we conclude that FeNOs merit increased study in pregnancy complications.


Asunto(s)
Nitritos , Preeclampsia , Animales , Epigénesis Genética , Femenino , Humanos , Hierro/metabolismo , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Óxidos de Nitrógeno , Placenta/metabolismo , Preeclampsia/metabolismo , Embarazo , Ratas , Ovinos
12.
PLoS One ; 17(6): e0269792, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35709218

RESUMEN

Pregnancy induces maternal renal adaptations that include increased glomerular filtration rate and renal blood flow which can be compromised in obstetrical complications such as preeclampsia. Brown Norway (BN) rat pregnancies are characterized by placental insufficiency, maternal hypertension, and proteinuria. We hypothesized that BN pregnancies would show renal functional, anatomical, or molecular features of preeclampsia. We used the Sprague-Dawley (CD) rat as a model of normal pregnancy. Pregnancy increased the glomerular filtration rate by 50% in CD rats and 12.2% in BN rats compared to non-pregnancy, and induced proteinuria only in BN rats. BN pregnancies showed a decrease in maternal plasma calcitriol levels, which correlated with renal downregulation of 1-alpha hydroxylase and upregulation of 24-hydroxylase. RNA sequencing revealed that pregnancy induced 297 differentially expressed genes (DEGs) in CD rats and 174 DEGs in BN rats, indicating a 70% increased response to pregnancy in CD compared to BN rats. Pregnancy induced activation of innate immune pathways such as 'Role of Pattern Recognition Receptors', and 'Interferon signaling' with interferon regulatory factor 7 as a common upregulated upstream factor in both rat strains. Comparison of rat strain transcriptomic profiles revealed 475 DEGs at non-pregnancy and 569 DEGs at pregnancy with 205 DEGs shared at non-pregnancy (36%), indicating that pregnancy interacted with rat strain in regulating 64% of the DEGs. Pathway analysis revealed that pregnancy induced a switch in renal transcriptomics in BN rats from 'inhibition of renal damage' to 'acute phase reaction', 'recruitment of immune cells' and 'inhibition of 1,25-(OH)2-vitamin D synthesis'. Key upstream regulators included peroxisome-proliferator-activated receptor alpha (PPARA), platelet-derived growth factor B dimer (PDGF-BB), and NF-kB p65 (RELA). DNA methylome profiling by reduced representation bisulfite sequencing studies revealed that the DEGs did not correlate with changes in promoter methylation. In sum, BN rat kidneys respond to pregnancy-specific signals with an increase in pro-inflammatory gene networks and alteration of metabolic pathways including vitamin D deficiency in association with mild proteinuria and blunted GFR increase. However, the lack of glomerular endotheliosis and mild hypertension/proteinuria in pregnant BN rats limits the relevance of this rat strain for preeclampsia research.


Asunto(s)
Hipertensión , Preeclampsia , Animales , Epigenoma , Femenino , Humanos , Hipertensión/metabolismo , Riñón/metabolismo , Oxigenasas de Función Mixta/metabolismo , Placenta/metabolismo , Embarazo , Proteinuria , Ratas , Ratas Endogámicas BN , Ratas Sprague-Dawley , Transcriptoma
13.
PLoS One ; 17(5): e0268282, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35544542

RESUMEN

BACKGROUND: There is evidence from various models of hypoxic-ischemic injury (HII) that nitric oxide (NO) is protective. We hypothesized that either inhaled NO (iNO) or nitrite would alleviate brain injury in neonatal HII via modulation of mitochondrial function. METHODS: We tested the effects of iNO and nitrite on the Rice-Vannucci model of HII in 7-day-old rats. Brain mitochondria were isolated for flow cytometry, aconitase activity, electron paramagnetic resonance, and Seahorse assays. RESULTS: Pretreatment of pups with iNO decreased survival in the Rice-Vannucci model of HII, while iNO administered post-insult did not. MRI analysis demonstrated that pre-HII iNO at 40 ppm and post-HII iNO at 20 ppm decreased the brain lesion sizes from 6.3±1.3% to 1.0±0.4% and 1.8±0.8%, respectively. Intraperitoneal nitrite at 0.165 µg/g improved neurobehavioral performance but was harmful at higher doses and had no effect on brain infarct size. NO reacted with complex IV at the heme a3 site, decreased the oxidative stress of mitochondria challenged with anoxia and reoxygenation, and suppressed mitochondrial oxygen respiration. CONCLUSIONS: This study suggests that iNO administered following neonatal HII may be neuroprotective, possibly via its modulation of mitochondrial function.


Asunto(s)
Óxido Nítrico , Nitritos , Administración por Inhalación , Animales , Animales Recién Nacidos , Hipoxia , Ratas
14.
Redox Biol ; 53: 102327, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35605454

RESUMEN

S-nitrosothiols (SNO), dinitrosyl iron complexes (DNIC), and nitroglycerine (NTG) dilate vessels via activation of soluble guanylyl cyclase (sGC) in vascular smooth muscle cells. Although these compounds are often considered to be nitric oxide (NO) donors, attempts to ascribe their vasodilatory activity to NO-donating properties have failed. Even more puzzling, many of these compounds have vasodilatory potency comparable to or even greater than that of NO itself, despite low membrane permeability. This raises the question: How do these NO adducts activate cytosolic sGC when their NO moiety is still outside the cell? In this review, we classify these compounds as 'nitrodilators', defined by their potent NO-mimetic vasoactivities despite not releasing requisite amounts of free NO. We propose that nitrodilators activate sGC via a preformed nitrodilator-activated NO store (NANOS) found within the vascular smooth muscle cell. We reinterpret vascular NO handling in the framework of this NANOS paradigm, and describe the knowledge gaps and perspectives of this novel model.


Asunto(s)
Óxido Nítrico , S-Nitrosotioles , Guanilato Ciclasa , Músculo Liso Vascular , Óxido Nítrico/farmacología , Donantes de Óxido Nítrico/farmacología , S-Nitrosotioles/farmacología , Guanilil Ciclasa Soluble , Vasodilatación
15.
J Cereb Blood Flow Metab ; 42(5): 891-900, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34878947

RESUMEN

Prominence of cerebral veins using susceptibility weighted magnetic resonance imaging (SWI) has been used as a qualitative indicator of cerebral venous oxygenation (CvO2). Quantitative susceptibility mapping (QSM) adds more precision to the assessment of CvO2, but has not been applied to neonatal hypoxic ischemic injury (HII). We proposed to study QSM measures of venous susceptibility and their correlation with direct measures of brain oxygenation and cerebral blood flow (CBF) in the neonatal piglet. The association of QSM intravascular cerebral venous susceptibility, with brain tissue O2 tension, CBF, cortical tissue oxyhemoglobin saturation, and the partial pressure of oxygen in arterial blood measurement during various oxygenation states was determined by linear regression. Compared to normoxia, venous susceptibility in the straight sinus increased 56.8 ± 25.4% during hypoxia, while decreasing during hyperoxia (23.5 ± 32.9%) and hypercapnia (23.3 ± 73.1%), which was highly correlated to all other measures of oxygenation (p < 0.0001) but did not correlate to CBF (p = 0.82). These findings demonstrate a strong relationship between venous susceptibility and brain tissue O2 tension. Our results suggest that QSM-derived venous susceptibility is sensitive to cerebral oxygenation status across various oxygenation states.


Asunto(s)
Venas Cerebrales , Animales , Encéfalo/irrigación sanguínea , Mapeo Encefálico/métodos , Venas Cerebrales/metabolismo , Circulación Cerebrovascular/fisiología , Hipoxia/metabolismo , Imagen por Resonancia Magnética/métodos , Oxígeno/metabolismo , Porcinos
16.
Front Physiol ; 12: 760176, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35115953

RESUMEN

Cerebral arterial vasoreactivity is vital to the regulation of cerebral blood flow. Depolarization of arterial myocytes elicits whole-cell Ca2+ oscillations as well as subcellular Ca2+ sparks due to activation of ryanodine receptors on the sarcoplasmic reticulum. Previous evidence illustrates that contraction of cerebral arteries from sheep and underlying Ca2+ signaling pathways are modified by age and that long-term hypoxia (LTH) causes aberrations in Ca2+ signaling pathways and downstream effectors impacting vasoregulation. We hypothesize that age and LTH affect the influence of membrane depolarization on whole-cell intracellular Ca2+ oscillations and sub-cellular Ca2+ spark activity in cerebral arteries. To test this hypothesis, we examined Ca2+ oscillatory and spark activities using confocal fluorescence imaging techniques of Fluo-4 loaded basilar arterial myocytes of low- and high-altitude term fetal (∼145 days of gestation) and adult sheep, where high-altitude pregnant and non-pregnant sheep were placed at 3,801 m for >100 days. Ca2+ oscillations and sparks were recorded using an in situ preparation evaluated in the absence or presence of 30 mM K+ (30K) to depolarize myocytes. Myocytes from adult animals tended to have a lower basal rate of whole-cell Ca2+ oscillatory activity and 30K increased the activity within cells. LTH decreased the ability of myocytes to respond to depolarization independent of age. These observations illustrate that both altitude and age play a role in affecting whole-cell and localized Ca2+ signaling, which are important to arterial vasoreactivity and cerebral blood flow.

17.
Am J Physiol Regul Integr Comp Physiol ; 319(4): R401-R411, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32813540

RESUMEN

Circulating metabolites of nitric oxide, such as nitrite, iron nitrosyls (FeNO), and nitrosothiols, have vasodilatory bioactivity. In both human and sheep neonates, plasma concentrations of these NO metabolite (NOx) concentrations fall >50% within minutes after birth, raising the possibility that circulating NOx plays a role in maintaining low fetal vascular resistance and in the cardiovascular transition at birth. To test whether the fall in plasma NOx concentrations at birth is due to either ligation of the umbilical cord or oxygenation of the fetus to newborn levels, plasma NOx concentrations were measured during stepwise delivery of near-term fetal lambs. When fetal lambs were intubated and mechanically ventilated with 100% O2 to oxygenate the arterial blood while still in utero with the umbilical circulation still intact, there was no change in plasma NOx levels. In contrast, when the umbilical cord was ligated while fetal lambs were mechanically ventilated with O2 levels that maintained fetal arterial blood gases, plasma NOx levels decreased by nearly 50%. Characterization of the individual NOx species in plasma revealed that the overall fall in NOx at birth was attributable mainly to FeNO compounds. Finally, when the typical fall in NOx after birth was prevented by intravenous nitrite infusion, birth-related changes in blood pressure, heart rate, and carotid flow changes were little affected, suggesting the cardiovascular transition at birth is not dependent on a fall in plasma NOx. In conclusion, this study shows FeNO is released from the placenta and that its decline accounts for most of the measured fall in plasma NOx at birth.


Asunto(s)
Sangre Fetal/metabolismo , Hierro/sangre , Nitritos/metabolismo , Óxidos de Nitrógeno/sangre , Parto/fisiología , Placenta/metabolismo , Animales , Sistema Cardiovascular/metabolismo , Femenino , Óxido Nítrico/metabolismo , Embarazo , Ovinos
18.
Free Radic Biol Med ; 160: 458-470, 2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-32828952

RESUMEN

Deferoxamine (DFO), an iron chelator, is used therapeutically for the removal of excess iron in multiple clinical conditions such as beta thalassemia and intracerebral hemorrhage. DFO is also used as an iron chelator and hypoxia-mimetic agent in in vivo and in vitro basic research. Here we unexpectedly discover DFO to be a nitric oxide (NO) precursor in experiments where it was intended to act as an iron chelator. Production of NO from aqueous solutions of DFO was directly observed by ozone-based chemiluminescence using a ferricyanide-based assay and was confirmed by electron paramagnetic resonance (EPR). DFO also produced NO following exposure to ultraviolet light, and its incubation with sheep adult and fetal blood resulted in considerable formation of iron nitrosyl hemoglobin, as confirmed by both visible spectroscopy and EPR. These results suggest that experiments using DFO can be confounded by concomitant production of NO, and offer new insight into some of DFO's unexplained clinical side effects such as hypotension.


Asunto(s)
Deferoxamina , Quelantes del Hierro , Animales , Ferricianuros , Óxido Nítrico , Ovinos , Rayos Ultravioleta
19.
J Surg Res ; 256: 83-89, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32683061

RESUMEN

AIM: The aim of this study was to evaluate the effects of a carbon dioxide pneumoperitoneum on cerebral and renal oxygenation and oxygen extraction, in a cohort of infants from the neonatal intensive care unit, undergoing laparoscopic gastrostomy. METHODS: After institutional review board approval, between February 2018 and June 2019, infants 0-3 mo corrected age, undergoing laparoscopic gastrostomy tube placement, were included. Strict exclusion criteria created a homogeneous cohort. Cerebral and renal tissue oxygen saturation (rSO2) by near-infrared spectroscopy, skin surface oxygen saturation (SpO2), by pulse oximetry, and amplitude-integrated electroencephalography were measured. Monitoring was divided into preoperative, intraoperative and postoperative time periods. Cerebral and renal fractional tissue oxygen extraction was calculated using arterial (SpO2) and tissue oxygen saturation (rSO2): (SpO2-rSO2SpO2)X100. Data were averaged into one-minute epochs and significant changes from baseline during the intraoperative and postoperative periods were detected using one-way analysis of variance with repeated measures. RESULTS: This pilot study examined sixteen infants, born at a median gestational age of 34.2 wk (range: 23.0-40.6) with a median corrected age of 42.9 wk (range: 40.0-46.3) at operation. None had seizure activity or altered sleep-wake cycles. No statistically significant variations in cerebral and renal tissue oxygenation and extraction were observed. Pulse oximetry did demonstrate significant variation from baseline on analysis of variance, but post hoc analysis did not identify any one specific time point at which this difference was significant. CONCLUSIONS: During a short infant laparoscopic procedure, no significant alteration in cerebral or renal oxygenation or oxygen extraction was observed. No seizure activity or changes in infant sleep-wake cycles occurred.


Asunto(s)
Encéfalo/metabolismo , Gastrostomía/efectos adversos , Riñón/metabolismo , Laparoscopía/efectos adversos , Oxígeno/metabolismo , Neumoperitoneo Artificial/efectos adversos , Dióxido de Carbono/efectos adversos , Nutrición Enteral/instrumentación , Femenino , Gastrostomía/instrumentación , Gastrostomía/métodos , Humanos , Recien Nacido Extremadamente Prematuro , Recién Nacido , Unidades de Cuidado Intensivo Neonatal/estadística & datos numéricos , Laparoscopía/instrumentación , Laparoscopía/métodos , Masculino , Monitoreo Fisiológico/métodos , Monitoreo Fisiológico/estadística & datos numéricos , Oximetría/estadística & datos numéricos , Oxígeno/análisis , Consumo de Oxígeno/fisiología , Proyectos Piloto , Periodo Posoperatorio , Periodo Preoperatorio , Estudios Prospectivos , Resultado del Tratamiento
20.
Hypertension ; 76(3): 930-942, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32683903

RESUMEN

Hypoxia during pregnancy profoundly affects uterine vascular adaptation and increases the risk of pregnancy complications, including preeclampsia and fetal intrauterine growth restriction. We recently demonstrated that increases in Ca2+ sparks and spontaneous transient outward currents (STOCs) played an essential role in pregnancy-induced uterine vascular adaptation. In the present study, we hypothesize that gestational hypoxia suppresses Ca2+ sparks/STOCs coupling leading to increased uterine vascular tone via enhanced endoplasmic reticulum (ER)/oxidative stress. Uterine arteries were obtained from nonpregnant and near-term pregnant sheep residing in low altitude or acclimatizing to high-altitude (3801 m) hypoxia for ≈110 days. High-altitude hypoxia suppressed pregnancy-induced upregulation of RyR1 and RyR2 (ryanodine receptor 1 and 2) protein abundance, Ca2+ sparks, and STOCs in uterine arteries. Inhibition of Ca2+ sparks/STOCs with the RyR inhibitor ryanodine significantly increased pressure-dependent myogenic tone in uterine arteries from low-altitude normoxic pregnant animals but not those from high-altitude hypoxic pregnant animals. Gestational hypoxia significantly increased ER/oxidative stress in uterine arteries. Of importance, the hypoxia-mediated suppression of Ca2+ sparks/STOCs and increase in myogenic tone in uterine arteries of pregnant animals were reversed by inhibiting ER/oxidative stress. Of great interest, the impaired sex hormonal regulation of STOCs in high-altitude animals was annulled by scavenging reactive oxygen species but not by inhibiting ER stress. Together, the findings reveal the differential mechanisms of ER and oxidative stresses in suppressing Ca2+ sparks/STOCs and increasing myogenic tone of uterine arteries in hypoxia during gestation, providing new insights into the understanding of pregnancy complications associated with hypoxia.


Asunto(s)
Mal de Altura/metabolismo , Señalización del Calcio/fisiología , Retículo Endoplásmico/metabolismo , Hipoxia , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Arteria Uterina/fisiología , Vasoconstricción/fisiología , Animales , Estrés del Retículo Endoplásmico , Femenino , Hipoxia/etiología , Hipoxia/metabolismo , Hipoxia/fisiopatología , Potenciales de la Membrana , Estrés Oxidativo/fisiología , Embarazo , Especies Reactivas de Oxígeno , Ovinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...