Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Ticks Tick Borne Dis ; 15(2): 102301, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38134511

RESUMEN

A bite from an infected tick is the primary means of transmission for tick-borne flaviviruses (TBFV). Ticks ingest the virus while feeding on infected blood. The traditional view is that the virus first replicates in and transits the tick midgut prior to dissemination to other organs, including salivary glands. Thus, understanding TBFV infection in the tick midgut is a key first step in identifying potential countermeasures against infection. Ex vivo midgut cultures prepared from unfed adult female Ixodes scapularis ticks were viable and remained morphologically intact for more than 8 days. The midgut consisted of two clearly defined cell layers separated by a basement membrane: an exterior network of smooth muscle cells and an internal epithelium composed of digestive generative cells. The smooth muscle cells were arranged in a stellate circumferential pattern spaced at regular intervals along the long axis of midgut diverticula. When the cultures were infected with the TBFV Langat virus (LGTV), virus production increased by two logs with a peak at 96 hours post-infection. Infected cells were readily identified by immunofluorescence staining for the viral envelope protein, nonstructural protein 3 (NS3) and dsRNA. Microscopy of the stained cultures suggested that generative cells were the primary target for virus infection in the midgut. Infected cells exhibited an expansion of membranes derived from the endoplasmic reticulum; a finding consistent with TBFV infected cell cultures. Electron microscopy of infected cultures revealed virus particles in the basolateral region between epithelial cells. These results demonstrated LGTV replication in midgut generative cells of artificially infected, ex vivo cultures of unfed adult female I. scapularis ticks.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas , Flavivirus , Ixodes , Femenino , Animales , Flavivirus/genética , Virus de la Encefalitis Transmitidos por Garrapatas/genética , Glándulas Salivales , Microscopía Electrónica , ARN Bicatenario
2.
Sci Rep ; 13(1): 4687, 2023 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-36949107

RESUMEN

Rocky Mountain spotted fever (RMSF) is a rapidly progressive and often fatal tick-borne disease caused by Rickettsia rickettsii. Its discovery and characterization by Howard Ricketts has been hailed as a remarkable historical example of detection and control of an emerging infectious disease, and subsequently led to the establishment of the Rocky Mountain Laboratories (RML). Here, we examined an unopened bottle of a vaccine, labeled as containing RMSF inactivated by phenol-formalin of infected ticks, developed prior to 1944 at RML by DNA analysis using Illumina high throughput sequencing technology. We found that it contains DNA from the Rocky Mountain wood tick (Dermacentor andersoni), the vector of RMSF, the complete genome of Rickettsia rickettsii, the pathogen of RMSF, as well as the complete genome of Coxiella burnetii, the pathogen of Q-fever. In addition to genomic reads of Rickettsia rickettsii and Coxiella burnetii, smaller percentages of the reads are from Rickettsia rhipicephali and Arsenophonus nasoniae, suggesting that the infected ticks used to prepare the vaccine carried more than one pathogen. Together, these findings suggest that this early vaccine was likely a bivalent vaccine for RMSF and Q-fever. This study is the among the first molecular level examinations of an historically important vaccine.


Asunto(s)
Coxiella burnetii , Fiebre Maculosa de las Montañas Rocosas , Garrapatas , Vacunas , Animales , Fiebre Maculosa de las Montañas Rocosas/prevención & control , Fiebre Maculosa de las Montañas Rocosas/microbiología , Rickettsia rickettsii/genética , Garrapatas/microbiología
3.
mBio ; 14(2): e0360622, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36809119

RESUMEN

Powassan infection is caused by two closely related, tick-transmitted viruses of the genus Flavivirus (family Flaviviridae): Powassan virus lineage I (POWV) and lineage II (known as deer tick virus [DTV]). Infection is typically asymptomatic or mild but can progress to neuroinvasive disease. Approximately 10% of neuroinvasive cases are fatal, and half of the survivors experience long-term neurological sequelae. Understanding how these viruses cause long-term symptoms as well as the possible role of viral persistence is important for developing therapies. We intraperitoneally inoculated 6-week-old C57BL/6 mice (50% female) with 103 focus-forming units (FFU) DTV and assayed for infectious virus, viral RNA, and inflammation during acute infection and 21, 56, and 84 days postinfection (dpi). Although most mice (86%) were viremic 3 dpi, only 21% of the mice were symptomatic and 83% recovered. Infectious virus was detected only in the brains of mice sampled during the acute infection. Viral RNA was detected in the brain until 84 dpi, but the magnitude decreased over time. Meningitis and encephalitis were visible in acute mice and from mice sampled at 21 dpi. Inflammation was observed until 56 dpi in the brain and 84 dpi in the spinal cord, albeit at low levels. These results suggest that the long-term neurological symptoms associated with Powassan disease are likely caused by lingering viral RNA and chronic inflammation in the central nervous system rather than by a persistent, active viral infection. The C57BL/6 model of persistent Powassan mimics illness in humans and can be used to study the mechanisms of chronic disease. IMPORTANCE Half of Powassan infection survivors experience long-term, mild to severe neurological symptoms. The progression from acute to chronic Powassan disease is not well understood, severely limiting treatment and prevention options. Infection of C57BL/6 mice with DTV mimics clinical disease in humans, and the mice exhibit CNS inflammation and viral RNA persistence until at least 86 dpi, while infectious virus is undetectable after 12 dpi. These findings suggest that the long-term neurological symptoms of chronic Powassan disease are in part due the persistence of viral RNA and the corresponding long-term inflammation of the brain and spinal cord. Our work demonstrates that C57BL/6 mice can be used to study the pathogenesis of chronic Powassan disease.


Asunto(s)
Encefalitis Transmitida por Garrapatas , Humanos , Femenino , Animales , Ratones , Masculino , Ratones Endogámicos C57BL , Encéfalo/patología , Inflamación , ARN Viral
4.
J Biol Chem ; 298(11): 102585, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36223838

RESUMEN

Tick-borne encephalitis virus (TBEV) is the most medically relevant tick-transmitted Flavivirus in Eurasia, targeting the host central nervous system and frequently causing severe encephalitis. The primary function of its capsid protein (TBEVC) is to recruit the viral RNA and form a nucleocapsid. Additional functionality of Flavivirus capsid proteins has been documented, but further investigation is needed for TBEVC. Here, we show the first capsid protein 3D structure of a member of the tick-borne flaviviruses group. The structure of monomeric Δ16-TBEVC was determined using high-resolution multidimensional NMR spectroscopy. Based on natural in vitro TBEVC homodimerization, the dimeric interfaces were identified by hydrogen deuterium exchange mass spectrometry (MS). Although the assembly of flaviviruses occurs in endoplasmic reticulum-derived vesicles, we observed that TBEVC protein also accumulated in the nuclei and nucleoli of infected cells. In addition, the predicted bipartite nuclear localization sequence in the TBEVC C-terminal part was confirmed experimentally, and we described the interface between TBEVC bipartite nuclear localization sequence and import adapter protein importin-alpha using X-ray crystallography. Furthermore, our coimmunoprecipitation coupled with MS identification revealed 214 interaction partners of TBEVC, including viral envelope and nonstructural NS5 proteins and a wide variety of host proteins involved mainly in rRNA processing and translation initiation. Metabolic labeling experiments further confirmed that TBEVC and other flaviviral capsid proteins are able to induce translational shutoff and decrease of 18S rRNA. These findings may substantially help to design a targeted therapy against TBEV.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas , Virus de la Encefalitis Transmitidos por Garrapatas/genética , Virus de la Encefalitis Transmitidos por Garrapatas/metabolismo , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Proteínas no Estructurales Virales/metabolismo , ARN Viral/metabolismo , Cápside/metabolismo
5.
Sci Rep ; 12(1): 13479, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35931720

RESUMEN

The relapsing fever agent Borrelia hermsii is transmitted by the tick Ornithodoros hermsi. To study the B. hermsii-tick interactions required for pathogen acquisition and transmission we developed an artificial membrane feeding system for O. hermsi nymphs and adults that results in a high percentage of engorgement. This system provides the nutritional requirements necessary for the tick to develop, mate, and produce viable eggs. By inoculating the blood with B. hermsii, we were able to obtain infected ticks for quantitative studies on pathogen acquisition and persistence. These ticks subsequently transmitted the spirochetes to mice, validating this system for both acquisition and transmission studies. Using this feeding method, a mutant of the antigenic variation locus of B. hermsii (Vmp-) that is incapable of persisting in mice was acquired by ticks at equivalent densities as the wild-type. Furthermore, Vmp is not required for persistence in the tick, as the mutant and wild-type strains are maintained at similar numbers after ecdysis and subsequent feeding. These results support the theory that Vmp is an adaptation for mammalian infection but unnecessary for survival within the tick. Interestingly, B. hermsii numbers severely declined after acquisition, though these ticks still transmitted the infection to mice. This procedure reduces animal use and provides a safe, highly controlled and well-contained alternative method for feeding and maintaining O. hermsi colonies. Importantly, this system permits quantitative studies with B. hermsii strains through ingestion during the blood meal, and thus more closely recapitulates pathogen acquisition in nature than other artificial systems.


Asunto(s)
Borrelia , Ornithodoros , Fiebre Recurrente , Spirochaeta , Animales , Borrelia/genética , Mamíferos , Membranas Artificiales , Ratones
6.
Emerg Microbes Infect ; 10(1): 1378-1389, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34162308

RESUMEN

The vector-borne flaviviruses (VBFVs) are well known for causing great misery and death in humans worldwide. The VBFVs include those transmitted by mosquitos, such as Zika virus (ZIKV), dengue virus; and those transmitted by ticks including the tick-borne flavivirus serocomplex and Powassan virus (POWV). Two of our recent reports showed that intracranial POWV infection in the reservoir host, Peromyscus leucopus, was restricted and caused no overt clinical disease. Several modes of analyses suggested activation of the LXR pathway. Activation of the LXR pathway leads to increased efflux of cholesterol from cells and consequent disturbances in membrane biogenesis. Because VBFV replication is dependent on membrane biogenesis, we evaluated the effect of an LXR agonist (LXR623) on POWV and ZIKV infection and observed that the compound impaired permissive replication of both viruses in a human neuroblastoma SK-N-SH cell line. The LXR agonist resulted in failure of the viruses to induce ER expansion and elaborate vesicle formation, suggesting that the efflux of cholesterol was part of the antiviral mechanism. We also observed that the LXR agonist contributed to the mechanism of virus suppression by increased expression of mRNAs encoding for the antiviral cytokines CXCL10, RANTES and IFN1ß. In sharp contrast, a LXR antagonist (GSK2033) had no significant effect on VBFV replication. We conclude that LXR623 impairs flavivirus replication by stimulating cellular antiviral factors.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas/efectos de los fármacos , Indazoles/farmacología , Receptores X del Hígado/agonistas , Virus Zika/efectos de los fármacos , Antivirales/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Citocinas/genética , Citocinas/metabolismo , Efecto Citopatogénico Viral/efectos de los fármacos , Vesículas Citoplasmáticas/efectos de los fármacos , Vesículas Citoplasmáticas/metabolismo , Virus de la Encefalitis Transmitidos por Garrapatas/fisiología , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Humanos , Receptores X del Hígado/metabolismo , Replicación Viral/efectos de los fármacos , Virus Zika/fisiología
7.
Viruses ; 13(1)2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33374514

RESUMEN

Repurposing FDA-approved drugs that treat respiratory infections caused by coronaviruses, such as SARS-CoV-2 and MERS-CoV, could quickly provide much needed antiviral therapies. In the current study, the potency and cellular toxicity of four fluoroquinolones (enoxacin, ciprofloxacin, levofloxacin, and moxifloxacin) were assessed in Vero cells and A549 cells engineered to overexpress ACE2, the SARS-CoV-2 entry receptor. All four fluoroquinolones suppressed SARS-CoV-2 replication at high micromolar concentrations in both cell types, with enoxacin demonstrating the lowest effective concentration 50 value (EC50) of 126.4 µM in Vero cells. Enoxacin also suppressed the replication of MERS-CoV-2 in Vero cells at high micromolar concentrations. Cellular toxicity of levofloxacin was not found in either cell type. In Vero cells, minimal toxicity was observed following treatment with ≥37.5 µM enoxacin and 600 µM ciprofloxacin. Toxicity in both cell types was detected after moxifloxacin treatment of ≥300 µM. In summary, these results suggest that the ability of fluoroquinolones to suppress SARS-CoV-2 and MERS-CoV replication in cultured cells is limited.


Asunto(s)
Antibacterianos/farmacología , Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Infecciones por Coronavirus/tratamiento farmacológico , Fluoroquinolonas/farmacología , Coronavirus del Síndrome Respiratorio de Oriente Medio/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , Células A549 , Enzima Convertidora de Angiotensina 2 , Animales , Línea Celular , Chlorocebus aethiops , Ciprofloxacina/farmacología , Enoxacino/farmacología , Humanos , Levofloxacino/farmacología , Moxifloxacino/farmacología , Células Vero
8.
PLoS Negl Trop Dis ; 14(10): e0008683, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33017410

RESUMEN

Infected Ixodes scapularis (black-legged tick) transmit a host of serious pathogens via their bites, including Borrelia burgdorferi, Babesia microti, and tick-borne flaviviruses (TBFVs), such as Powassan virus (POWV). Although the role of female I. scapularis ticks in disease transmission is well characterized, the role of male ticks is poorly understood. Because the pathogens are delivered in tick saliva, we studied the capacity of male salivary glands (SGs) to support virus replication. Ex vivo cultures of SGs from unfed male I. scapularis were viable for more than a week and maintained the characteristic tissue architecture of lobular ducts and acini. When SG cultures were infected with the TBFVs Langat virus (LGTV) or POWV lineage II (deer tick virus), the production of infectious virus was demonstrated. Using a green fluorescent protein-tagged LGTV and confocal microscopy, we demonstrated LGTV infection within SG acinus types II and III. The presence of LGTV in the acini and lobular ducts of the cultures was also shown via immunohistochemistry. Furthermore, the identification by in situ hybridization of both positive and negative strand LGTV RNA confirmed that the virus was indeed replicating. Finally, transmission electron microscopy of infected SGs revealed virus particles packaged in vesicles or vacuoles adjacent to acinar lumina. These studies support the concept that SGs of male I. scapularis ticks support replication of TBFVs and may play a role in virus transmission, and further refine a useful model system for developing countermeasures against this important group of pathogens.


Asunto(s)
Infecciones por Flavivirus/veterinaria , Ixodes/virología , Glándulas Salivales/virología , Animales , Virus de la Encefalitis Transmitidos por Garrapatas/crecimiento & desarrollo , Infecciones por Flavivirus/virología , Masculino , Microscopía , Microscopía Electrónica de Transmisión , Microscopía Fluorescente
9.
Viruses ; 12(10)2020 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-32977414

RESUMEN

Tick-borne flaviviruses (TBFVs) are reemerging public health threats. To develop therapeutics against these pathogens, increased understanding of their interactions with the mammalian host is required. The PI3K-AKT pathway has been implicated in TBFV persistence, but its role during acute virus infection remains poorly understood. Previously, we showed that Langat virus (LGTV)-infected HEK 293T cells undergo a lytic crisis with a few surviving cells that become persistently infected. We also observed that AKT2 mRNA is upregulated in cells persistently infected with TBFV. Here, we investigated the virus-induced effects on AKT expression over the course of acute LGTV infection and found that total phosphorylated AKT (pAKT), AKT1, and AKT2 decrease over time, but AKT3 increases dramatically. Furthermore, cells lacking AKT1 or AKT2 were more resistant to LGTV-induced cell death than wild-type cells because they expressed higher levels of pAKT and antiapoptotic proteins, such as XIAP and survivin. The differential modulation of AKT by LGTV may be a mechanism by which viral persistence is initiated, and our results demonstrate a complicated manipulation of host pathways by TBFVs.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas/fisiología , Infecciones por Flavivirus/enzimología , Interacciones Huésped-Patógeno , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células HEK293 , Humanos
10.
Artículo en Inglés | MEDLINE | ID: mdl-32322563

RESUMEN

The deer tick Ixodes scapularis transmits a variety of disease agents in the United States, spreading the bacteria that causes Lyme borreliosis, the protozoan agent of babesiosis, and viruses such as Powassan. However, a variety of other organisms have also evolved symbiotic relationships with this tick species, and it seems likely that some of these microbes have simultaneously coevolved mechanisms to impact each other and their tick host. The number of organisms identified as I. scapularis symbionts has increased seemingly exponentially with the advent of PCR and next generation sequencing technologies, but convincing arguments have proposed that some of these are of environmental origin, unadapted to surviving the physiological conditions of the tick or that they are artifacts of ultrasensitive detection methods. In this review, we examine the diversity of the known microbes occurring within the I. scapularis microbiome, the evidence for interactions between microbes, and discuss whether some organisms reported to be symbionts of I. scapularis are experimental artifacts.


Asunto(s)
Babesiosis , Borrelia burgdorferi , Ixodes , Enfermedad de Lyme , Microbiota , Animales , Bacterias/genética , Estados Unidos
11.
Viruses ; 12(3)2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-32197325

RESUMEN

The unfolded protein response (UPR) maintains protein-folding homeostasis in the endoplasmic reticulum (ER) and has been implicated as both beneficial and detrimental to flavivirus infection. Protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK), a sensor of the UPR, is commonly associated with antiviral effects during mosquito-borne flavivirus (MBFV) infection, but its relation to tick-borne flavivirus (TBFV) infection remains largely unexplored. In this study, we identified changes in UPR and autophagic activity during Langat virus (LGTV) infection. LGTV robustly activated UPR and altered autophagic flux. Knockdown of endogenous PERK in human cells resulted in increased LGTV replication, but not that of closely related Powassan virus (POWV). Finally, on examining changes in protein levels of components associated with UPR and autophagy in the absence of PERK, we could show that LGTV-infected cells induced UPR but did not lead to expression of C/EBP homologous protein (CHOP), an important downstream transcription factor of multiple stress pathways. From these data, we hypothesize that LGTV can antagonize other kinases that target eukaryotic initiation factor 2α (eIF2α), but not PERK, implicating PERK as a potential mediator of intrinsic immunity. This effect was not apparent for POWV, a more pathogenic TBFV, suggesting it may be better equipped to mitigate the antiviral effects of PERK.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas/fisiología , Encefalitis Transmitida por Garrapatas/metabolismo , Encefalitis Transmitida por Garrapatas/virología , Transducción de Señal , Respuesta de Proteína Desplegada , Replicación Viral , eIF-2 Quinasa/metabolismo , Autofagia , Biomarcadores , Línea Celular , Supervivencia Celular , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Técnica del Anticuerpo Fluorescente , Técnicas de Silenciamiento del Gen , Marcación de Gen , Humanos , Factor de Transcripción CHOP/genética , Factor de Transcripción CHOP/metabolismo
12.
Nat Microbiol ; 4(12): 2369-2382, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31384002

RESUMEN

Flaviviruses, including dengue virus (DENV) and Zika virus (ZIKV), cause severe human disease. Co-opting cellular factors for viral translation and viral genome replication at the endoplasmic reticulum is a shared replication strategy, despite different clinical outcomes. Although the protein products of these viruses have been studied in depth, how the RNA genomes operate inside human cells is poorly understood. Using comprehensive identification of RNA-binding proteins by mass spectrometry (ChIRP-MS), we took an RNA-centric viewpoint of flaviviral infection and identified several hundred proteins associated with both DENV and ZIKV genomic RNA in human cells. Genome-scale knockout screens assigned putative functional relevance to the RNA-protein interactions observed by ChIRP-MS. The endoplasmic-reticulum-localized RNA-binding proteins vigilin and ribosome-binding protein 1 directly bound viral RNA and each acted at distinct stages in the life cycle of flaviviruses. Thus, this versatile strategy can elucidate features of human biology that control the pathogenesis of clinically relevant viruses.


Asunto(s)
Infecciones por Flavivirus/virología , Flavivirus/genética , Flavivirus/fisiología , ARN Viral/genética , Sistemas CRISPR-Cas , Proteínas Portadoras , Línea Celular , Virus del Dengue/genética , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Flavivirus/patogenicidad , Técnicas de Inactivación de Genes , Interacciones Huésped-Patógeno/genética , Humanos , ARN Viral/metabolismo , Proteínas de Unión al ARN/genética , Replicación Viral , Virus Zika/genética
13.
mBio ; 10(1)2019 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-30696737

RESUMEN

The Ixodes scapularis tick transmits a number of pathogens, including tick-borne flaviviruses (TBFVs). In the United States, confirmed human infections with the Powassan virus (POWV) TBFV have a fatality rate of ∼10% and are increasing in incidence. Tick salivary glands (SGs) serve as an organ barrier to TBFV transmission, and little is known regarding the location of TBFV infection in SGs from fed ticks. Previous studies showed I. scapularis vanin (VNN) involved with TBFV infection of I. scapularis ISE6 embryonic cells, suggesting a potential role for this gene. The overall goal of this study was to use SG cultures to compare data on TBFV biology in SGs from fully engorged, replete (fed) ticks and from unfed ticks. TBFV multiplication was higher in SGs from fed ticks than in those from unfed ticks. Virus-like particles were observed only in granular acini of SGs from unfed ticks. The location of TBFV infection of SGs from fed ticks was observed in cells lining lobular ducts and trachea but not observed in acini. Transcript knockdown of VNN decreased POWV multiplication in infected SG cultures from both fed and unfed ticks. This work was the first to identify localization of TBFV multiplication in SG cultures from a fed tick and a tick transcript important for POWV multiplication in the tick SG, an organ critical for TBFV transmission. This research exemplifies the use of SG cultures in deciphering TBFV biology in the tick and as a translational tool for screening and identifying potential tick genes as potential countermeasure targets.IMPORTANCE Tick-borne flaviviruses (TBFVs) are responsible for more than 15,000 human disease cases each year, and Powassan virus lineage 2 (POWV-L2) deer tick virus has been a reemerging threat in North America over the past 20 years. Rapid transmission of TBFVs in particular emphasizes the importance of preventing tick bites, the difficulty in developing countermeasures to prevent transmission, and the importance of understanding TBFV infection in tick salivary glands (SGs). Tick blood feeding is responsible for phenomenal physiological changes and is associated with changes in TBFV multiplication within the tick and in SGs. Using SG cultures from Ixodes scapularis female ticks, the primary aims of this study were to identify cellular localization of virus-like particles in acini of infected SGs from fed and unfed ticks, localization of TBFV infection in infected SGs from fed ticks, and a tick transcript (with associated metabolic function) involved in POWV-L2 infection in SG cultures.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas/crecimiento & desarrollo , Infecciones por Flavivirus/veterinaria , Ixodes/virología , Glándulas Salivales/virología , Animales , Infecciones por Flavivirus/virología , Microscopía , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Tráquea/virología
14.
Viruses ; 11(1)2019 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-30634400

RESUMEN

BACKGROUND: Zika virus is a mosquito-borne flavivirus responsible for recent outbreaks of epidemic proportions in Latin America. Sexual transmission of the virus has been reported in 13 countries and may be an important route of infection. Sexual transmission of ZIKV has mostly been male-to-female, and persistence of viral RNA in semen for up to 370 days has been recorded. The susceptibility to ZIKV of different testicular cell types merits investigation. METHODS: We infected primary Sertoli cells, a primary testicular fibroblast Hs1.Tes, and 2 seminoma cell lines SEM-1 and TCam-2 cells with ZIKV Paraiba and the prototype ZIKV MR766 to evaluate their susceptibility and to look for viral persistence. A human neuroblastoma cell line SK-N-SH served as a control cell type. RESULTS: Both virus strains were able to replicate in all cell lines tested, but ZIKV MR766 attained higher titers. Initiation of viral persistence by ZIKV Paraiba was observed in Sertoli, Hs1.Tes, SEM-1 and TCam-2 cells, but was of limited duration due to delayed cell death. ZIKV MR766 persisted only in Hs1.Tes and Sertoli cells, and persistence was also limited. In contrast, SK-N-SH cells were killed by both ZIKV MR766 and ZIKV Paraiba and persistence could not be established in these cells. CONCLUSIONS: ZIKV prototype strain MR766 and the clinically relevant Paraiba strain replicated in several testicular cell types. Persistence of ZIKV MR766 was only observed in Hs1.Tes and Sertoli cells, but the persistence did not last more than 3 or 4 passages, respectively. ZIKV Paraiba persisted in TCam-2, Hs1.Tes, Sertoli and SEM-1 cells for up to 5 passages, depending on cell type. TCam-2 cells appeared to clear persistent infection by ZIKV Paraiba.


Asunto(s)
Células de Sertoli/virología , Testículo/citología , Replicación Viral , Virus Zika/fisiología , Línea Celular , Fibroblastos/virología , Humanos , Masculino , ARN Viral , Semen/virología , Seminoma/virología , Testículo/virología , Infección por el Virus Zika/virología
15.
Nat Commun ; 9(1): 5350, 2018 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-30559387

RESUMEN

Sexual transmission and persistence of Zika virus (ZIKV) in the male reproductive tract (MRT) poses new challenges for controlling virus outbreaks and developing live-attenuated vaccines. To elucidate routes of ZIKV dissemination in the MRT, we here generate microRNA-targeted ZIKV clones that lose the infectivity for (1) the cells inside seminiferous tubules of the testis, or (2) epithelial cells of the epididymis. We trace ZIKV dissemination in the MRT using an established mouse model of ZIKV pathogenesis. Our results support a model in which ZIKV infects the testis via a hematogenous route, while infection of the epididymis can occur via two routes: (1) hematogenous/lymphogenous and (2) excurrent testicular. Co-targeting of the ZIKV genome with brain-, testis-, and epididymis-specific microRNAs restricts virus infection of these organs, but does not affect virus-induced protective immunity in mice and monkeys. These defined alterations of ZIKV tropism represent a rational design of a safe live-attenuated ZIKV vaccine.


Asunto(s)
Epidídimo/virología , Túbulos Seminíferos/virología , Infección por el Virus Zika/transmisión , Virus Zika/genética , Virus Zika/patogenicidad , Animales , Chlorocebus aethiops , Modelos Animales de Enfermedad , Genoma Viral/genética , Macaca mulatta , Masculino , Ratones , MicroARNs/genética , Células Vero , Virus Zika/inmunología , Infección por el Virus Zika/patología , Infección por el Virus Zika/veterinaria
16.
Artículo en Inglés | MEDLINE | ID: mdl-30234026

RESUMEN

Small-to-medium sized mammals and large animals are lucrative sources of blood meals for ixodid ticks that transmit life-threatening tick-borne flaviviruses (TBFVs). TBFVs have been isolated from various organs obtained from wild-caught Myodes and Apodemus species in Europe and Asia. Thus, these rodents are well-established reservoirs of TBFVs. Wild-caught Peromyscus species have demonstrated seropositivity against Powassan virus, the only TBFV known to circulate in North America, suggesting that they may play an important role in the biology of the virus in this geographic region. However, virus isolation from Peromyscus species is yet to be demonstrated. Wild-caught medium-sized mammals, such as woodchucks (Marmota monax) and skunks (Mephitis mephitis) have also demonstrated seropositivity against POWV, and virus was isolated from apparently healthy animals. Despite the well-established knowledge that small-to-medium sized animals are TBFV reservoirs, specific molecular biology addressing host-pathogen interactions remains poorly understood. Elucidating these interactions will be critical for gaining insight into the mechanism(s) of viral pathogenesis and/or resistance.


Asunto(s)
Reservorios de Enfermedades/virología , Infecciones por Flavivirus/veterinaria , Flavivirus/crecimiento & desarrollo , Mephitidae/virología , Enfermedades de los Roedores/virología , Roedores/virología , Enfermedades por Picaduras de Garrapatas/veterinaria , Animales , Asia , Europa (Continente) , Flavivirus/aislamiento & purificación , Infecciones por Flavivirus/virología , América del Norte , Enfermedades por Picaduras de Garrapatas/virología
18.
Viruses ; 10(6)2018 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-29914165

RESUMEN

Tick-borne flaviviruses have a global distribution and cause significant human disease, including encephalitis and hemorrhagic fever, and often result in neurologic sequelae. There are two distinct properties that determine the neuropathogenesis of a virus. The ability to invade the central nervous system (CNS) is referred to as the neuroinvasiveness of the agent, while the ability to infect and damage cells within the CNS is referred to as its neurovirulence. Examination of laboratory variants, cDNA clones, natural isolates with varying pathogenicity, and virally encoded immune evasion strategies have contributed extensively to our understanding of these properties. Here we will review the major viral determinants of virulence that contribute to pathogenesis and influence both neuroinvasiveness and neurovirulence properties of tick-borne flaviviruses, focusing particularly on the envelope protein (E), nonstructural protein 5 (NS5), and the 3′ untranslated region (UTR).


Asunto(s)
Infecciones del Sistema Nervioso Central/patología , Infecciones del Sistema Nervioso Central/virología , Flavivirus/genética , Flavivirus/patogenicidad , Garrapatas/virología , Factores de Virulencia/genética , Animales , Flavivirus/aislamiento & purificación , Humanos
19.
ACS Infect Dis ; 4(3): 247-256, 2018 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-29473735

RESUMEN

Each year there are more than 15 000 cases of human disease caused by infections with tick-borne viruses (TBVs). These illnesses occur worldwide and can range from very mild illness to severe encephalitis and hemorrhagic fever. Although TBVs are currently identified as neglected vector-borne pathogens and receive less attention than mosquito-borne viruses, TBVs are expanding into new regions, and infection rates are increasing. Furthermore, effective vaccines, diagnostic tools, and other countermeasures are limited. The application of contemporary technologies to TBV infections presents an excellent opportunity to develop improved, effective countermeasures. Experimental tick and mammal models of infection can be used to characterize determinants of infection, transmission, and virulence and to test candidate countermeasures. The use of ex vivo tick cultures in TBV research provides a unique way to look at infection in specific tick organs. Mammal ex vivo organ slice and, more recently, organoid cultures are additional models that can be used to elucidate direct tissue-specific responses to infection. These ex vivo model systems are convenient for testing methods involving transcript knockdown and small molecules under tightly controlled conditions. They can also be combined with in vitro and in vivo studies to tease out possible host factors and potential vaccine or therapeutic candidates. In this brief perspective, we describe how ex vivo cultures can be combined with modern technologies to advance research on TBV infections.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas/crecimiento & desarrollo , Técnicas de Cultivo de Órganos/métodos , Virología/métodos , Animales , Mamíferos , Modelos Teóricos
20.
J Neurovirol ; 24(1): 75-87, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29147886

RESUMEN

Powassan virus (POWV) is a tick-borne Flavivirus responsible for life-threatening encephalitis in North America and some regions of Russia. The ticks that have been reported to transmit the virus belong to the Ixodes species, and they feed on small-to-medium-sized mammals, such as Peromyscus leucopus mice, skunks, and woodchucks. We previously developed a P. leucopus mouse model of POWV infection, and the model is characterized by a lack of clinical signs of disease following intraperitoneal or intracranial inoculation. However, intracranial inoculation results in mild subclinical encephalitis from 5 days post infection (dpi), but the encephalitis resolves by 28 dpi. We used RNA sequencing to profile the P. leucopus mouse brain transcriptome at different time points after intracranial challenge with POWV. At 24 h post infection, 42 genes were significantly differentially expressed and the number peaked to 232 at 7 dpi before declining to 31 at 28 dpi. Using Ingenuity Pathway Analysis, we determined that the genes that were significantly expressed from 1 to 15 dpi were mainly associated with interferon signaling. As a result, many interferon-stimulated genes (ISGs) were upregulated. Some of the ISGs include an array of TRIMs (genes encoding tripartite motif proteins). These results will be useful for the identification of POWV restriction factors.


Asunto(s)
Encéfalo/virología , Encefalitis Transmitida por Garrapatas/genética , Factores Reguladores del Interferón/genética , Peromyscus/virología , Transcriptoma , Proteínas de Motivos Tripartitos/genética , Animales , Modelos Animales de Enfermedad , Virus de la Encefalitis Transmitidos por Garrapatas/genética , Virus de la Encefalitis Transmitidos por Garrapatas/patogenicidad , Encefalitis Transmitida por Garrapatas/inmunología , Encefalitis Transmitida por Garrapatas/virología , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Inyecciones Intraventriculares , Factores Reguladores del Interferón/inmunología , Ixodes/virología , Peromyscus/genética , Peromyscus/inmunología , Transducción de Señal , Proteínas de Motivos Tripartitos/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...