Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Viruses ; 15(12)2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-38140582

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the worldwide COVID-19 pandemic. Animal models are extremely helpful for testing vaccines and therapeutics and for dissecting the viral and host factors that contribute to disease severity and transmissibility. Here, we report the assessment and comparison of intranasal and small particle (~3 µm) aerosol SARS-CoV-2 exposure in ferrets. The primary endpoints for analysis were clinical signs of disease, recovery of the virus in the upper respiratory tract, and the severity of damage within the respiratory tract. This work demonstrated that ferrets were productively infected with SARS-CoV-2 following either intranasal or small particle aerosol exposure. SARS-CoV-2 infection of ferrets resulted in an asymptomatic disease course following either intranasal or small particle aerosol exposure, with no clinical signs, significant weight loss, or fever. In both aerosol and intranasal ferret models, SARS-CoV-2 replication, viral genomes, and viral antigens were detected within the upper respiratory tract, with little to no viral material detected in the lungs. The ferrets exhibited a specific IgG immune response to the SARS-CoV-2 full spike protein. Mild pathological findings included inflammation, necrosis, and edema within nasal turbinates, which correlated to positive immunohistochemical staining for the SARS-CoV-2 virus. Environmental sampling was performed following intranasal exposure of ferrets, and SARS-CoV-2 genomic material was detected on the feeders and nesting areas from days 2-10 post-exposure. We conclude that both intranasal and small particle aerosol ferret models displayed measurable parameters that could be utilized for future studies, including transmission studies and testing SARS-CoV-2 vaccines and therapeutics.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Humanos , Hurones , Vacunas contra la COVID-19 , Pandemias , Aerosoles y Gotitas Respiratorias , Modelos Animales de Enfermedad
2.
Viruses ; 14(5)2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35632755

RESUMEN

The emergence of SARS-CoV-2 and the subsequent pandemic has highlighted the need for animal models that faithfully replicate the salient features of COVID-19 disease in humans. These models are necessary for the rapid selection, testing, and evaluation of potential medical countermeasures. Here, we performed a direct comparison of two distinct routes of SARS-CoV-2 exposure-combined intratracheal/intranasal and small particle aerosol-in two nonhuman primate species, rhesus and cynomolgus macaques. While all four experimental groups displayed very few outward clinical signs, evidence of mild to moderate respiratory disease was present on radiographs and at necropsy. Cynomolgus macaques exposed via the aerosol route also developed the most consistent fever responses and had the most severe respiratory disease and pathology. This study demonstrates that while all four models produced suitable representations of mild COVID-like illness, aerosol exposure of cynomolgus macaques to SARS-CoV-2 produced the most severe disease, which may provide additional clinical endpoints for evaluating therapeutics and vaccines.


Asunto(s)
COVID-19 , Aerosoles , Animales , Modelos Animales de Enfermedad , Macaca fascicularis , SARS-CoV-2 , Índice de Severidad de la Enfermedad
3.
Microorganisms ; 9(3)2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33806942

RESUMEN

Ebola virus is a continuing threat to human populations, causing a virulent hemorrhagic fever disease characterized by dysregulation of both the innate and adaptive host immune responses. Severe cases are distinguished by an early, elevated pro-inflammatory response followed by a pronounced lymphopenia with B and T cells unable to mount an effective anti-viral response. The precise mechanisms underlying the dysregulation of the host immune system are poorly understood. In recent years, focus on host-derived miRNAs showed these molecules to play an important role in the host gene regulation arsenal. Here, we describe an investigation of RNA biomarkers in the fatal Ebola virus disease (EVD) cynomolgus macaque model. We monitored both host mRNA and miRNA responses in whole blood longitudinally over the disease course in these non-human primates (NHPs). Analysis of the interactions between these classes of RNAs revealed several miRNA markers significantly correlated with downregulation of genes; specifically, the analysis revealed those involved in dysregulated immune pathways associated with EVD. In particular, we noted strong interactions between the miRNAs hsa-miR-122-5p and hsa-miR-125b-5p with immunological genes regulating both B and T-cell activation. This promising set of biomarkers will be useful in future studies of severe EVD pathogenesis in both NHPs and humans and may serve as potential prognostic targets.

4.
Am J Trop Med Hyg ; 104(2): 549-551, 2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33355071

RESUMEN

We modeled the stability of SARS-CoV-2 on personal protective equipment (PPE) commonly worn in hospitals when carrying out high-risk airway procedures. Evaluated PPE included the visors and hoods of two brands of commercially available powered air purifying respirators, a disposable face shield, and Tyvek coveralls. Following an exposure to 4.3 log10 plaque-forming units (PFUs) of SARS-CoV-2, all materials displayed a reduction in titer of > 4.2 log10 by 72 hours postexposure, with detectable titers at 72 hours varying by material (1.1-2.3 log10 PFU/mL). Our results highlight the need for proper doffing and disinfection of PPE, or disposal, to reduce the risk of SARS-CoV-2 contact or fomite transmission.


Asunto(s)
COVID-19/transmisión , Guantes Protectores/virología , Viabilidad Microbiana , Equipo de Protección Personal/virología , Dispositivos de Protección Respiratoria/virología , SARS-CoV-2/fisiología , COVID-19/virología , Semivida , Humanos , Transmisión de Enfermedad Infecciosa de Paciente a Profesional
5.
PLoS Negl Trop Dis ; 14(11): e0008831, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33166294

RESUMEN

A new coronavirus (SARS-CoV-2) emerged in the winter of 2019 in Wuhan, China, and rapidly spread around the world. The extent and efficiency of SARS-CoV-2 pandemic is far greater than previous coronaviruses that emerged in the 21st Century. Here, we modeled stability of SARS-CoV-2 on skin, paper currency, and clothing to determine if these surfaces may factor in the fomite transmission dynamics of SARS-CoV-2. Skin, currency, and clothing samples were exposed to SARS-CoV-2 under laboratory conditions and incubated at three different temperatures (4°C± 2°C, 22°C± 2°C, and 37°C ± 2°C). We evaluated stability at 0 hours (h), 4 h, 8 h, 24 h, 72 h, 96 h, 7 days, and 14 days post-exposure. SARS-CoV-2 was stable on skin through the duration of the experiment at 4°C (14 days). Virus remained stable on skin for at least 96 h at 22°C and for at least 8h at 37°C. There were minimal differences between the tested currency samples. The virus remained stable on the $1 U.S.A. Bank Note for at least 96 h at 4°C while we did not detect viable virus on the $20 U.S.A. Bank Note samples beyond 72 h. The virus remained stable on both Bank Notes for at least 8 h at 22°C and 4 h at 37°C. Clothing samples were similar in stability to the currency. Viable virus remained for at least 96 h at 4°C and at least 4 h at 22°C. We did not detect viable virus on clothing samples at 37°C after initial exposure. This study confirms the inverse relationship between virus stability and temperature. Furthermore, virus stability on skin demonstrates the need for continued hand hygiene practices to minimize fomite transmission both in the general population as well as in workplaces where close contact is common.


Asunto(s)
Betacoronavirus/fisiología , Infecciones por Coronavirus/virología , Neumonía Viral/virología , Piel/virología , COVID-19 , Vestuario , Infecciones por Coronavirus/transmisión , Microbiología Ambiental , Humanos , Pandemias , Neumonía Viral/transmisión , SARS-CoV-2 , Propiedades de Superficie , Temperatura
6.
Am J Trop Med Hyg ; 103(5): 2024-2025, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32930089

RESUMEN

We modeled the stability of SARS-CoV-2 on apples, tomatoes, and jalapeño peppers at two temperatures following a low-dose aerosol exposure designed to simulate an airborne transmission event involving droplet nuclei. Infectious virus was not recovered postexposure.


Asunto(s)
Betacoronavirus/aislamiento & purificación , Contaminación de Alimentos/análisis , Frutas/virología , Verduras/virología , Aerosoles , Fómites/virología , SARS-CoV-2 , Temperatura
7.
Viruses ; 12(1)2020 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-31941095

RESUMEN

Recent Ebola virus (EBOV) outbreaks in West Africa and the Democratic Republic of the Congo have highlighted the urgent need for approval of medical countermeasures for treatment and prevention of EBOV disease (EVD). Until recently, when successes were achieved in characterizing the efficacy of multiple experimental EVD therapeutics in humans, the only feasible way to obtain data regarding potential clinical benefits of candidate therapeutics was by conducting well-controlled animal studies. Nonclinical studies are likely to continue to be important tools for screening and development of new candidates with improved pharmacological properties. Here, we describe a natural history study to characterize the time course and order of progression of the disease manifestations of EVD in rhesus monkeys. In 12 rhesus monkeys exposed by the intramuscular route to 1000 plaque-forming units of EBOV, multiple endpoints were monitored for 28 days following exposure. The disease progressed rapidly with mortality events occurring 7-10 days after exposure. Key disease manifestations observed consistently across the infected animals included, but were not limited to, viremia, fever, systemic inflammation, coagulopathy, lymphocytolysis, renal tubular necrosis with mineralization, and hepatocellular degeneration and necrosis.


Asunto(s)
Modelos Animales de Enfermedad , Ebolavirus/patogenicidad , Fiebre Hemorrágica Ebola/fisiopatología , Macaca mulatta/virología , Animales , Progresión de la Enfermedad , Femenino , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Fiebre Hemorrágica Ebola/mortalidad , Inyecciones Intramusculares , Masculino
8.
Emerg Infect Dis ; 23(8): 1274-1281, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28548637

RESUMEN

Unprotected sexual intercourse between persons residing in or traveling from regions with Zika virus transmission is a risk factor for infection. To model risk for infection after sexual intercourse, we inoculated rhesus and cynomolgus macaques with Zika virus by intravaginal or intrarectal routes. In macaques inoculated intravaginally, we detected viremia and virus RNA in 50% of macaques, followed by seroconversion. In macaques inoculated intrarectally, we detected viremia, virus RNA, or both, in 100% of both species, followed by seroconversion. The magnitude and duration of infectious virus in the blood of macaques suggest humans infected with Zika virus through sexual transmission will likely generate viremias sufficient to infect competent mosquito vectors. Our results indicate that transmission of Zika virus by sexual intercourse might serve as a virus maintenance mechanism in the absence of mosquito-to-human transmission and could increase the probability of establishment and spread of Zika virus in regions where this virus is not present.


Asunto(s)
Macaca fascicularis , Macaca mulatta , Infección por el Virus Zika/virología , Virus Zika/fisiología , Animales , Femenino , Masculino , Vagina , Replicación Viral , Esparcimiento de Virus , Infección por el Virus Zika/transmisión
9.
Viruses ; 8(4): 113, 2016 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-27110807

RESUMEN

A plaque assay for quantitating filoviruses in virus stocks, prepared viral challenge inocula and samples from research animals has recently been fully characterized and standardized for use across multiple institutions performing Biosafety Level 4 (BSL-4) studies. After standardization studies were completed, Good Laboratory Practices (GLP)-compliant plaque assay method validation studies to demonstrate suitability for reliable and reproducible measurement of the Marburg Virus Angola (MARV) variant and Ebola Virus Kikwit (EBOV) variant commenced at the United States Army Medical Research Institute of Infectious Diseases (USAMRIID). The validation parameters tested included accuracy, precision, linearity, robustness, stability of the virus stocks and system suitability. The MARV and EBOV assays were confirmed to be accurate to ±0.5 log10 PFU/mL. Repeatability precision, intermediate precision and reproducibility precision were sufficient to return viral titers with a coefficient of variation (%CV) of ≤30%, deemed acceptable variation for a cell-based bioassay. Intraclass correlation statistical techniques for the evaluation of the assay's precision when the same plaques were quantitated by two analysts returned values passing the acceptance criteria, indicating high agreement between analysts. The assay was shown to be accurate and specific when run on Nonhuman Primates (NHP) serum and plasma samples diluted in plaque assay medium, with negligible matrix effects. Virus stocks demonstrated stability for freeze-thaw cycles typical of normal usage during assay retests. The results demonstrated that the EBOV and MARV plaque assays are accurate, precise and robust for filovirus titration in samples associated with the performance of GLP animal model studies.


Asunto(s)
Filoviridae/fisiología , Ensayo de Placa Viral/normas , Animales , Técnicas de Cultivo de Célula , Línea Celular , Ebolavirus/fisiología , Marburgvirus/fisiología , Control de Calidad , Reproducibilidad de los Resultados
10.
Viruses ; 4(12): 3468-93, 2012 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-23207275

RESUMEN

Countering aerosolized filovirus infection is a major priority of biodefense research. Aerosol models of filovirus infection have been developed in knock-out mice, guinea pigs and non-human primates; however, filovirus infection of immunocompetent mice by the aerosol route has not been reported. A murine model of aerosolized filovirus infection in mice should be useful for screening vaccine candidates and therapies. In this study, various strains of wild-type and immunocompromised mice were exposed to aerosolized wild-type (WT) or mouse-adapted (MA) Ebola virus (EBOV). Upon exposure to aerosolized WT-EBOV, BALB/c, C57BL/6 (B6), and DBA/2 (D2) mice were unaffected, but 100% of severe combined immunodeficiency (SCID) and 90% of signal transducers and activators of transcription (Stat1) knock-out (KO) mice became moribund between 7-9 days post-exposure (dpe). Exposure to MA-EBOV caused 15% body weight loss in BALB/c, but all mice recovered. In contrast, 10-30% lethality was observed in B6 and D2 mice exposed to aerosolized MA-EBOV, and 100% of SCID, Stat1KO, interferon (IFN)-γ KO and Perforin KO mice became moribund between 7-14 dpe. In order to identify wild-type, inbred, mouse strains in which exposure to aerosolized MA-EBOV is uniformly lethal, 60 BXD (C57BL/6 crossed with DBA2) recombinant inbred (RI) and advanced RI (ARI) mouse strains were exposed to aerosolized MA-EBOV, and monitored for disease severity. A complete spectrum of disease severity was observed. All BXD strains lost weight but many recovered. However, infection was uniformly lethal within 7 to 12 days post-exposure in five BXD strains. Aerosol exposure of these five BXD strains to 10-fold less MA-EBOV resulted in lethality ranging from 0% in two strains to 90-100% lethality in two strains. Analysis of post-mortem tissue from BXD strains that became moribund and were euthanized at the lower dose of MA-EBOV, showed liver damage in all mice as well as lung lesions in two of the three strains. The two BXD strains that exhibited 90-100% mortality, even at a low dose of airborne MA-EBOV will be useful mouse models for testing vaccines and therapies. Additionally, since disease susceptibility is affected by complex genetic traits, a systems genetics approach was used to identify preliminary gene loci modulating disease severity among the panel BXD strains. Preliminary quantitative trait loci (QTLs) were identified that are likely to harbor genes involved in modulating differential susceptibility to Ebola infection.


Asunto(s)
Aerosoles , Transmisión de Enfermedad Infecciosa , Ebolavirus/patogenicidad , Fiebre Hemorrágica Ebola/transmisión , Animales , Modelos Animales de Enfermedad , Fiebre Hemorrágica Ebola/mortalidad , Fiebre Hemorrágica Ebola/patología , Huésped Inmunocomprometido , Hígado/patología , Pulmón/patología , Ratones , Ratones Noqueados , Ratones SCID , Análisis de Supervivencia
11.
Viruses ; 4(10): 2115-36, 2012 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23202456

RESUMEN

Filoviruses are members of the genera Ebolavirus, Marburgvirus, and "Cuevavirus". Because they cause human disease with high lethality and could potentially be used as a bioweapon, these viruses are classified as CDC Category A Bioterrorism Agents. Filoviruses are relatively stable in aerosols, retain virulence after lyophilization, and can be present on contaminated surfaces for extended periods of time. This study explores the characteristics of aerosolized Sudan virus (SUDV) Boniface in non-human primates (NHP) belonging to three different species. Groups of cynomolgus macaques (cyno), rhesus macaques (rhesus), and African green monkeys (AGM) were challenged with target doses of 50 or 500 plaque-forming units (pfu) of aerosolized SUDV. Exposure to either viral dose resulted in increased body temperatures in all three NHP species beginning on days 4-5 post-exposure. Other clinical findings for all three NHP species included leukocytosis, thrombocytopenia, anorexia, dehydration, and lymphadenopathy. Disease in all of the NHPs was severe beginning on day 6 post-exposure, and all animals except one surviving rhesus macaque were euthanized by day 14. Serum alanine transaminase (ALT) and aspartate transaminase (AST) concentrations were elevated during the course of disease in all three species; however, AGMs had significantly higher ALT and AST concentrations than cynos and rhesus. While all three species had detectable viral load by days 3-4 post exposure, Rhesus had lower average peak viral load than cynos or AGMs. Overall, the results indicate that the disease course after exposure to aerosolized SUDV is similar for all three species of NHP.


Asunto(s)
Chlorocebus aethiops/virología , Infecciones por Filoviridae/patología , Filoviridae/patogenicidad , Macaca fascicularis/virología , Macaca mulatta/virología , Aerosoles , Alanina Transaminasa/sangre , Animales , Aspartato Aminotransferasas/sangre , Presión Sanguínea , Temperatura Corporal , Modelos Animales de Enfermedad , Femenino , Infecciones por Filoviridae/virología , Frecuencia Cardíaca , Exposición por Inhalación , Estimación de Kaplan-Meier , Recuento de Leucocitos , Leucocitosis/patología , Leucocitosis/virología , Masculino , Índice de Severidad de la Enfermedad , Telemetría , Factores de Tiempo , Células Vero , Carga Viral
12.
Viruses ; 4(12): 3511-30, 2012 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-23223188

RESUMEN

The filovirus plaque assay serves as the assay of choice to measure infectious virus in a cell culture, blood, or homogenized tissue sample. It has been in use for more than 30 years and is the generally accepted assay used to titrate virus in samples from animals treated with a potential antiviral therapeutic or vaccine. As these animal studies are required for the development of vaccines and therapeutics under the FDA Animal Rule, it is essential to have a standardized assay to compare their efficacies against the various filoviruses. Here, we present an evaluation of the conditions under which the filovirus plaque assay performs best for the Ebola virus Kikwit variant and the Angola variant of Marburg virus. The indicator cell type and source, inoculum volumes, length of incubation and general features of filovirus biology as visualized in the assay are addressed in terms of the impact on the sample viral titer calculations. These optimization studies have resulted in a plaque assay protocol which can be used for preclinical studies, and as a standardized protocol for use across institutions, to aid in data comparison. This protocol will be validated for use in GLP studies supporting advanced development of filovirus therapeutics and vaccines.


Asunto(s)
Ebolavirus/aislamiento & purificación , Marburgvirus/aislamiento & purificación , Carga Viral/métodos , Carga Viral/normas , Ensayo de Placa Viral/métodos , Ensayo de Placa Viral/normas , Animales , Chlorocebus aethiops , Ebolavirus/crecimiento & desarrollo , Marburgvirus/crecimiento & desarrollo , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...