Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Clin Infect Dis ; 78(Supplement_2): S83-S92, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38662692

RESUMEN

Over the past decade, considerable progress has been made in the control, elimination, and eradication of neglected tropical diseases (NTDs). Despite these advances, most NTD programs have recently experienced important setbacks; for example, NTD interventions were some of the most frequently and severely impacted by service disruptions due to the coronavirus disease 2019 (COVID-19) pandemic. Mathematical modeling can help inform selection of interventions to meet the targets set out in the NTD road map 2021-2030, and such studies should prioritize questions that are relevant for decision-makers, especially those designing, implementing, and evaluating national and subnational programs. In September 2022, the World Health Organization hosted a stakeholder meeting to identify such priority modeling questions across a range of NTDs and to consider how modeling could inform local decision making. Here, we summarize the outputs of the meeting, highlight common themes in the questions being asked, and discuss how quantitative modeling can support programmatic decisions that may accelerate progress towards the 2030 targets.


Asunto(s)
COVID-19 , Enfermedades Desatendidas , Medicina Tropical , Enfermedades Desatendidas/prevención & control , Humanos , COVID-19/epidemiología , COVID-19/prevención & control , Modelos Teóricos , Organización Mundial de la Salud , SARS-CoV-2 , Toma de Decisiones , Salud Global
2.
Clin Infect Dis ; 78(Supplement_2): S101-S107, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38662700

RESUMEN

Assessing the feasibility of 2030 as a target date for global elimination of trachoma, and identification of districts that may require enhanced treatment to meet World Health Organization (WHO) elimination criteria by this date are key challenges in operational planning for trachoma programmes. Here we address these challenges by prospectively evaluating forecasting models of trachomatous inflammation-follicular (TF) prevalence, leveraging ensemble-based approaches. Seven candidate probabilistic models were developed to forecast district-wise TF prevalence in 11 760 districts, trained using district-level data on the population prevalence of TF in children aged 1-9 years from 2004 to 2022. Geographical location, history of mass drug administration treatment, and previously measured prevalence data were included in these models as key predictors. The best-performing models were included in an ensemble, using weights derived from their relative likelihood scores. To incorporate the inherent stochasticity of disease transmission and challenges of population-level surveillance, we forecasted probability distributions for the TF prevalence in each geographic district, rather than predicting a single value. Based on our probabilistic forecasts, 1.46% (95% confidence interval [CI]: 1.43-1.48%) of all districts in trachoma-endemic countries, equivalent to 172 districts, will exceed the 5% TF control threshold in 2030 with the current interventions. Global elimination of trachoma as a public health problem by 2030 may require enhanced intervention and/or surveillance of high-risk districts.


Asunto(s)
Erradicación de la Enfermedad , Predicción , Salud Pública , Tracoma , Tracoma/epidemiología , Tracoma/prevención & control , Humanos , Preescolar , Lactante , Niño , Erradicación de la Enfermedad/métodos , Prevalencia , Modelos Estadísticos , Administración Masiva de Medicamentos , Organización Mundial de la Salud , Salud Global , Masculino , Femenino
3.
Am J Trop Med Hyg ; 109(5): 1107-1112, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37783458

RESUMEN

Azithromycin mass drug administration decreases child mortality but also selects for antibiotic resistance. Herein, we evaluate macrolide resistance of nasopharyngeal Streptococcus pneumoniae after azithromycin MDA. In a cluster-randomized trial, children 1-59 months received azithromycin or placebo biannually. Fifteen villages from each arm were randomly selected for antimicrobial resistance testing, and 10-15 randomly selected swabs from enrolled children at each village were processed for S. pneumoniae isolation and resistance testing. The primary prespecified outcome was macrolide resistance fraction for azithromycin versus placebo villages at 36 months. Secondary non-prespecified outcomes were comparisons of azithromycin and placebo for: 1) macrolide resistance at 12, 24, and 36 months; 2) nonmacrolide resistance at 36 months; and 3) suspected-erm mutation. At 36 months, 423 swabs were obtained and 322 grew S. pneumoniae, (azithromycin: 146/202, placebo: 176/221). Mean resistance prevalence was non-significantly higher in treatment than placebo (mixed-effects model: 14.6% vs. 8.9%; OR = 2.0, 95% CI: 0.99-3.97). However, when all time points were evaluated, macrolide resistance prevalence was significantly higher in the azithromycin group (ß = 0.102, 95% CI: 0.04-0.167). For all nonmacrolides, resistance prevalence at 36 months was not different between the two groups. Azithromycin and placebo were not different for suspected-erm mutation prevalence. Macrolide resistance was higher in the azithromycin group over all time points, but not at 36 months. Although this suggests resistance may not continue to increase after biannual MDA, more studies are needed to clarify when MDA can safely decrease mortality and morbidity in lower- and middle-income countries.


Asunto(s)
Antibacterianos , Azitromicina , Niño , Humanos , Lactante , Azitromicina/farmacología , Azitromicina/uso terapéutico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Macrólidos/farmacología , Macrólidos/uso terapéutico , Streptococcus pneumoniae/genética , Administración Masiva de Medicamentos , Niger/epidemiología , Farmacorresistencia Bacteriana/genética
4.
medRxiv ; 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37662306

RESUMEN

Correctional institutions are a crucial hotspot amplifying SARS-CoV-2 spread and disease disparity in the U.S. In the California state prison system, multiple massive outbreaks have been caused by transmission between prisons. Correctional staff are a likely vector for transmission into the prison system from surrounding communities. We used publicly available data to estimate the magnitude of flows to and between California state prisons, estimating rates of transmission from communities to prison staff and residents, among and between residents and staff within facilities, and between staff and residents of distinct facilities in the state's 34 prisons through March 22, 2021. We use a mechanistic model, the Hawkes process, reflecting the dynamics of SARS-CoV-2 transmission, for joint estimation of transmission rates. Using nested models for hypothesis testing, we compared the results to simplified models (i) without transmission between prisons, and (ii) with no distinction between prison staff and residents. We estimated that transmission between different facilities' staff is a significant cause of disease spread, and that staff are a vector of transmission between resident populations and outside communities. While increased screening and vaccination of correctional staff may help reduce introductions, large-scale decarceration remains crucially needed as more limited measures are not likely to prevent large-scale disease spread.

5.
Emerg Infect Dis ; 29(4): 679-685, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36958029

RESUMEN

Antimicrobial resistance is a major threat to human health. Since the 2000s, computational tools for predicting infectious diseases have been greatly advanced; however, efforts to develop real-time forecasting models for antimicrobial-resistant organisms (AMROs) have been absent. In this perspective, we discuss the utility of AMRO forecasting at different scales, highlight the challenges in this field, and suggest future research priorities. We also discuss challenges in scientific understanding, access to high-quality data, model calibration, and implementation and evaluation of forecasting models. We further highlight the need to initiate research on AMRO forecasting using currently available data and resources to galvanize the research community and address initial practical questions.


Asunto(s)
Antibacterianos , Enfermedades Transmisibles , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Farmacorresistencia Bacteriana , Predicción , Exactitud de los Datos
6.
PLOS Glob Public Health ; 3(1): e0001302, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36962883

RESUMEN

COVID-19 outbreaks in congregate settings remain a serious threat to the health of disproportionately affected populations such as people experiencing incarceration or homelessness, the elderly, and essential workers. An individual-based model accounting for individual infectiousness over time, staff work schedules, and testing and isolation schedules was developed to simulate community transmission of SARS-CoV-2 to staff in a congregate facility and subsequent transmission within the facility that could cause an outbreak. Systematic testing strategies in which staff are tested on the first day of their workweek were found to prevent up to 16% more infections than testing strategies unrelated to staff schedules. Testing staff at the beginning of their workweek, implementing timely isolation following testing, limiting test turnaround time, and increasing test frequency in high transmission scenarios can supplement additional mitigation measures to aid outbreak prevention in congregate settings.

7.
Open Forum Infect Dis ; 9(11): ofac593, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36467298

RESUMEN

Background: Transmission by unreported cases has been proposed as a reason for the 2013-2016 Ebola virus (EBOV) epidemic decline in West Africa, but studies that test this hypothesis are lacking. We examined a transmission chain within social networks in Sukudu village to assess spread and transmission burnout. Methods: Network data were collected in 2 phases: (1) serological and contact information from Ebola cases (n = 48, including unreported); and (2) interviews (n = 148), including Ebola survivors (n = 13), to identify key social interactions. Social links to the transmission chain were used to calculate cumulative incidence proportion as the number of EBOV-infected people in the network divided by total network size. Results: The sample included 148 participants and 1522 contacts, comprising 10 social networks: 3 had strong links (>50% of cases) to the transmission chain: household sharing (largely kinship), leisure time, and talking about important things (both largely non-kin). Overall cumulative incidence for these networks was 37 of 311 (12%). Unreported cases did not have higher network centrality than reported cases. Conclusions: Although this study did not find evidence that explained epidemic decline in Sukudu, it excluded potential reasons (eg, unreported cases, herd immunity) and identified 3 social interactions in EBOV transmission.

8.
PLoS Comput Biol ; 18(7): e1010308, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35857774

RESUMEN

The explosive outbreaks of COVID-19 seen in congregate settings such as prisons and nursing homes, has highlighted a critical need for effective outbreak prevention and mitigation strategies for these settings. Here we consider how different types of control interventions impact the expected number of symptomatic infections due to outbreaks. Introduction of disease into the resident population from the community is modeled as a stochastic point process coupled to a branching process, while spread between residents is modeled via a deterministic compartmental model that accounts for depletion of susceptible individuals. Control is modeled as a proportional decrease in the number of susceptible residents, the reproduction number, and/or the proportion of symptomatic infections. This permits a range of assumptions about the density dependence of transmission and modes of protection by vaccination, depopulation and other types of control. We find that vaccination or depopulation can have a greater than linear effect on the expected number of cases. For example, assuming a reproduction number of 3.0 with density-dependent transmission, we find that preemptively reducing the size of the susceptible population by 20% reduced overall disease burden by 47%. In some circumstances, it may be possible to reduce the risk and burden of disease outbreaks by optimizing the way a group of residents are apportioned into distinct residential units. The optimal apportionment may be different depending on whether the goal is to reduce the probability of an outbreak occurring, or the expected number of cases from outbreak dynamics. In other circumstances there may be an opportunity to implement reactive disease control measures in which the number of susceptible individuals is rapidly reduced once an outbreak has been detected to occur. Reactive control is most effective when the reproduction number is not too high, and there is minimal delay in implementing control. We highlight the California state prison system as an example for how these findings provide a quantitative framework for understanding disease transmission in congregate settings. Our approach and accompanying interactive website (https://phoebelu.shinyapps.io/DepopulationModels/) provides a quantitative framework to evaluate the potential impact of policy decisions governing infection control in outbreak settings.


Asunto(s)
COVID-19 , COVID-19/epidemiología , COVID-19/prevención & control , Brotes de Enfermedades/prevención & control , Humanos , Control de Infecciones , Casas de Salud , Vacunación
9.
J Am Med Inform Assoc ; 29(7): 1279-1285, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35289912

RESUMEN

OBJECTIVE: There is a need for a systematic method to implement the World Health Organization's Clinical Progression Scale (WHO-CPS), an ordinal clinical severity score for coronavirus disease 2019 patients, to electronic health record (EHR) data. We discuss our process of developing guiding principles mapping EHR data to WHO-CPS scores across multiple institutions. MATERIALS AND METHODS: Using WHO-CPS as a guideline, we developed the technical blueprint to map EHR data to ordinal clinical severity scores. We applied our approach to data from 2 medical centers. RESULTS: Our method was able to classify clinical severity for 100% of patient days for 2756 patient encounters across 2 institutions. DISCUSSION: Implementing new clinical scales can be challenging; strong understanding of health system data architecture was integral to meet the clinical intentions of the WHO-CPS. CONCLUSION: We describe a detailed blueprint for how to apply the WHO-CPS scale to patient data from the EHR.


Asunto(s)
COVID-19 , Registros Electrónicos de Salud , Bases de Datos Factuales , Humanos , Pacientes Internos , Organización Mundial de la Salud
10.
BMJ ; 376: e068576, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35177406

RESUMEN

OBJECTIVE: To create and validate a simple and transferable machine learning model from electronic health record data to accurately predict clinical deterioration in patients with covid-19 across institutions, through use of a novel paradigm for model development and code sharing. DESIGN: Retrospective cohort study. SETTING: One US hospital during 2015-21 was used for model training and internal validation. External validation was conducted on patients admitted to hospital with covid-19 at 12 other US medical centers during 2020-21. PARTICIPANTS: 33 119 adults (≥18 years) admitted to hospital with respiratory distress or covid-19. MAIN OUTCOME MEASURES: An ensemble of linear models was trained on the development cohort to predict a composite outcome of clinical deterioration within the first five days of hospital admission, defined as in-hospital mortality or any of three treatments indicating severe illness: mechanical ventilation, heated high flow nasal cannula, or intravenous vasopressors. The model was based on nine clinical and personal characteristic variables selected from 2686 variables available in the electronic health record. Internal and external validation performance was measured using the area under the receiver operating characteristic curve (AUROC) and the expected calibration error-the difference between predicted risk and actual risk. Potential bed day savings were estimated by calculating how many bed days hospitals could save per patient if low risk patients identified by the model were discharged early. RESULTS: 9291 covid-19 related hospital admissions at 13 medical centers were used for model validation, of which 1510 (16.3%) were related to the primary outcome. When the model was applied to the internal validation cohort, it achieved an AUROC of 0.80 (95% confidence interval 0.77 to 0.84) and an expected calibration error of 0.01 (95% confidence interval 0.00 to 0.02). Performance was consistent when validated in the 12 external medical centers (AUROC range 0.77-0.84), across subgroups of sex, age, race, and ethnicity (AUROC range 0.78-0.84), and across quarters (AUROC range 0.73-0.83). Using the model to triage low risk patients could potentially save up to 7.8 bed days per patient resulting from early discharge. CONCLUSION: A model to predict clinical deterioration was developed rapidly in response to the covid-19 pandemic at a single hospital, was applied externally without the sharing of data, and performed well across multiple medical centers, patient subgroups, and time periods, showing its potential as a tool for use in optimizing healthcare resources.


Asunto(s)
COVID-19/diagnóstico , Reglas de Decisión Clínica , Hospitalización/estadística & datos numéricos , Aprendizaje Automático , Medición de Riesgo/métodos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Área Bajo la Curva , Deterioro Clínico , Registros Electrónicos de Salud , Femenino , Hospitales , Humanos , Modelos Lineales , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Pronóstico , Curva ROC , Estudios Retrospectivos , SARS-CoV-2 , Adulto Joven
11.
medRxiv ; 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34268514

RESUMEN

While many transmission models have been developed for community spread of respiratory pathogens, less attention has been given to modeling the interdependence of disease introduction and spread seen in congregate settings, such as prisons or nursing homes. As demonstrated by the explosive outbreaks of COVID-19 seen in congregate settings, the need for effective outbreak prevention and mitigation strategies for these settings is critical. Here we consider how interventions that decrease the size of the susceptible populations, such as vaccination or depopulation, impact the expected number of infections due to outbreaks. Introduction of disease into the resident population from the community is modeled as a branching process, while spread between residents is modeled via a compartmental model. Control is modeled as a proportional decrease in both the number of susceptible residents and the reproduction number. We find that vaccination or depopulation can have a greater than linear effect on anticipated infections. For example, assuming a reproduction number of 3.0 for density-dependent COVID-19 transmission, we find that reducing the size of the susceptible population by 20% reduced overall disease burden by 47%. We highlight the California state prison system as an example for how these findings provide a quantitative framework for implementing infection control in congregate settings. Additional applications of our modeling framework include optimizing the distribution of residents into independent residential units, and comparison of preemptive versus reactive vaccination strategies.

12.
Curr Opin Infect Dis ; 34(4): 333-338, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34039877

RESUMEN

PURPOSE OF REVIEW: Mathematical, statistical, and computational models provide insight into the transmission mechanisms and optimal control of healthcare-associated infections. To contextualize recent findings, we offer a summative review of recent literature focused on modeling transmission of pathogens in healthcare settings. RECENT FINDINGS: The COVID-19 pandemic has led to a dramatic shift in the modeling landscape as the healthcare community has raced to characterize the transmission dynamics of SARS-CoV-2 and develop effective interventions. Inequities in COVID-19 outcomes have inspired new efforts to quantify how structural bias impacts both health outcomes and model parameterization. Meanwhile, developments in the modeling of methicillin-resistant Staphylococcus aureus, Clostridioides difficile, and other nosocomial infections continue to advance. Machine learning continues to be applied in novel ways, and genomic data is being increasingly incorporated into modeling efforts. SUMMARY: As the type and amount of data continues to grow, mathematical, statistical, and computational modeling will play an increasing role in healthcare epidemiology. Gaps remain in producing models that are generalizable to a variety of time periods, geographic locations, and populations. However, with effective communication of findings and interdisciplinary collaboration, opportunities for implementing models for clinical decision-making and public health decision-making are bound to increase.


Asunto(s)
Infección Hospitalaria/epidemiología , Infección Hospitalaria/transmisión , Modelos Teóricos , COVID-19/epidemiología , Infección Hospitalaria/etiología , Infección Hospitalaria/prevención & control , Brotes de Enfermedades , Susceptibilidad a Enfermedades , Humanos , Aprendizaje Automático , Pandemias , Vigilancia en Salud Pública
13.
Clin Infect Dis ; 72(Suppl 3): S134-S139, 2021 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-33905484

RESUMEN

BACKGROUND: Tremendous progress towards elimination of trachoma as a public health problem has been made. However, there are areas where the clinical indicator of disease, trachomatous inflammation-follicular (TF), remains prevalent. We quantify the progress that has been made, and forecast how TF prevalence will evolve with current interventions. We also determine the probability that a district is a transmission-hotspot based on its TF prevalence (ie, reproduction number greater than one). METHODS: Data on trachoma prevalence come from the GET2020 global repository organized by the World Health Organization and the International Trachoma Initiative. Forecasts of TF prevalence and the percent of districts with local control is achieved by regressing the coefficients of a fitted exponential distribution for the year-by-year distribution of TF prevalence. The probability of a district being a transmission-hotspot is extrapolated from the residuals of the regression. RESULTS: Forecasts suggest that with current interventions, 96.5% of surveyed districts will have TF prevalence among children aged 1-9 years <5% by 2030 (95% CI: 86.6%-100.0%). Districts with TF prevalence < 20% appear unlikely to be transmission-hotspots. However, a district having TF prevalence of over 28% in 2016-2019 corresponds to at least 50% probability of being a transmission-hotspot. CONCLUSIONS: Sustainable control of trachoma appears achievable. However there are transmission-hotspots that are not responding to annual mass drug administration of azithromycin and require enhanced treatment in order to reach local control.


Asunto(s)
Tracoma , Antibacterianos/uso terapéutico , Azitromicina/uso terapéutico , Niño , Estudios Transversales , Humanos , Lactante , Administración Masiva de Medicamentos , Prevalencia , Tracoma/tratamiento farmacológico
14.
Trans R Soc Trop Med Hyg ; 115(3): 213-221, 2021 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-33596317

RESUMEN

BACKGROUND: The COVID-19 pandemic has disrupted planned annual antibiotic mass drug administration (MDA) activities that have formed the cornerstone of the largely successful global efforts to eliminate trachoma as a public health problem. METHODS: Using a mathematical model we investigate the impact of interruption to MDA in trachoma-endemic settings. We evaluate potential measures to mitigate this impact and consider alternative strategies for accelerating progress in those areas where the trachoma elimination targets may not be achievable otherwise. RESULTS: We demonstrate that for districts that were hyperendemic at baseline, or where the trachoma elimination thresholds have not already been achieved after three rounds of MDA, the interruption to planned MDA could lead to a delay to reaching elimination targets greater than the duration of interruption. We also show that an additional round of MDA in the year following MDA resumption could effectively mitigate this delay. For districts where the probability of elimination under annual MDA was already very low, we demonstrate that more intensive MDA schedules are needed to achieve agreed targets. CONCLUSION: Through appropriate use of additional MDA, the impact of COVID-19 in terms of delay to reaching trachoma elimination targets can be effectively mitigated. Additionally, more frequent MDA may accelerate progress towards 2030 goals.


Asunto(s)
COVID-19/epidemiología , Control de Enfermedades Transmisibles/organización & administración , Tracoma/epidemiología , Tracoma/prevención & control , Antibacterianos/uso terapéutico , Humanos , Administración Masiva de Medicamentos , Modelos Teóricos , Enfermedades Desatendidas/epidemiología , Enfermedades Desatendidas/prevención & control , Pandemias , SARS-CoV-2
15.
Trans R Soc Trop Med Hyg ; 115(3): 222-228, 2021 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-33449114

RESUMEN

BACKGROUND: Progress towards elimination of trachoma as a public health problem has been substantial, but the coronavirus disease 2019 (COVID-19) pandemic has disrupted community-based control efforts. METHODS: We use a susceptible-infected model to estimate the impact of delayed distribution of azithromycin treatment on the prevalence of active trachoma. RESULTS: We identify three distinct scenarios for geographic districts depending on whether the basic reproduction number and the treatment-associated reproduction number are above or below a value of 1. We find that when the basic reproduction number is <1, no significant delays in disease control will be caused. However, when the basic reproduction number is >1, significant delays can occur. In most districts, 1 y of COVID-related delay can be mitigated by a single extra round of mass drug administration. However, supercritical districts require a new paradigm of infection control because the current strategies will not eliminate disease. CONCLUSIONS: If the pandemic can motivate judicious, community-specific implementation of control strategies, global elimination of trachoma as a public health problem could be accelerated.


Asunto(s)
Antibacterianos/uso terapéutico , Azitromicina/uso terapéutico , COVID-19/epidemiología , Control de Enfermedades Transmisibles/organización & administración , Tracoma/epidemiología , Tracoma/prevención & control , Humanos , Administración Masiva de Medicamentos , Enfermedades Desatendidas/epidemiología , Enfermedades Desatendidas/prevención & control , Pandemias , Prevalencia , Salud Pública , SARS-CoV-2
16.
Clin Infect Dis ; 72(8): 1463-1466, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-32984870

RESUMEN

Due to the COVID-19 pandemic, many key neglected tropical disease (NTD) activities have been postponed. This hindrance comes at a time when the NTDs are progressing towards their ambitious goals for 2030. Mathematical modelling on several NTDs, namely gambiense sleeping sickness, lymphatic filariasis, onchocerciasis, schistosomiasis, soil-transmitted helminthiases (STH), trachoma, and visceral leishmaniasis, shows that the impact of this disruption will vary across the diseases. Programs face a risk of resurgence, which will be fastest in high-transmission areas. Furthermore, of the mass drug administration diseases, schistosomiasis, STH, and trachoma are likely to encounter faster resurgence. The case-finding diseases (gambiense sleeping sickness and visceral leishmaniasis) are likely to have fewer cases being detected but may face an increasing underlying rate of new infections. However, once programs are able to resume, there are ways to mitigate the impact and accelerate progress towards the 2030 goals.


Asunto(s)
COVID-19 , Medicina Tropical , Humanos , Enfermedades Desatendidas/epidemiología , Pandemias , SARS-CoV-2
17.
medRxiv ; 2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-33140063

RESUMEN

BACKGROUND: Progress towards elimination of trachoma as a public health problem has been substantial, but the COVID-19 pandemic has disrupted community-based control efforts. METHODS: We use a susceptible-infected model to estimate the impact of delayed distribution of azithromycin treatment on the prevalence of active trachoma. RESULTS: We identify three distinct scenarios for geographic districts depending on whether the basic reproduction number and the treatment-associated reproduction number are above or below a value of one. We find that when the basic reproduction number is below one, no significant delays in disease control will be caused. However, when the basic reproduction number is above one, significant delays can occur. In most districts a year of COVID-related delay can be mitigated by a single extra round of mass drug administration. However, supercritical districts require a new paradigm of infection control because the current strategies will not eliminate disease. CONCLUSION: If the pandemic can motivate judicious, community-specific implementation of control strategies, global elimination of trachoma as a public health problem could be accelerated.

18.
medRxiv ; 2020 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-32577672

RESUMEN

The current COVID-19 pandemic has spurred concern about what interventions may be effective at reducing transmission. The city and county of San Francisco imposed a shelter-in-place order in March 2020, followed by use of a contact tracing program and a policy requiring use of cloth face masks. We used statistical estimation and simulation to estimate the effectiveness of these interventions in San Francisco. We estimated that self-isolation and other practices beginning at the time of San Francisco's shelter-in-place order reduced the effective reproduction number of COVID-19 by 35.4% (95% CI, -20.1%-81.4%). We estimated the effect of contact tracing on the effective reproduction number to be a reduction of approximately 44% times the fraction of cases that are detected, which may be modest if the detection rate is low. We estimated the impact of cloth mask adoption on reproduction number to be approximately 8.6%, and note that the benefit of mask adoption may be substantially greater for essential workers and other vulnerable populations, residents return to circulating outside the home more often. We estimated the effect of those interventions on incidence by simulating counterfactual scenarios in which contact tracing was not adopted, cloth masks were not adopted, and neither contact tracing nor cloth masks was adopted, and found increases in case counts that were modest, but relatively larger than the effects on reproduction numbers. These estimates and model results suggest that testing coverage and timing of testing and contact tracing may be important, and that modest effects on reproduction numbers can nonetheless cause substantial effects on case counts over time.

19.
medRxiv ; 2020 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-32511436

RESUMEN

Background: As of March 31, 2020 the ongoing COVID-19 epidemic that started in China in December 2019 is now generating local transmission around the world. The geographic heterogeneity and associated intervention strategies highlight the need to monitor in real time the transmission potential of COVID-19. Singapore provides a unique case example for monitoring transmission, as there have been multiple disease clusters, yet transmission remains relatively continued. Methods: Here we estimate the effective reproduction number, Rt, of COVID-19 in Singapore from the publicly available daily case series of imported and autochthonous cases by date of symptoms onset, after adjusting the local cases for reporting delays as of March 17, 2020. We also derive the reproduction number from the distribution of cluster sizes using a branching process analysis that accounts for truncation of case counts. Results: The local incidence curve displays sub-exponential growth dynamics, with the reproduction number following a declining trend and reaching an estimate at 0.7 (95% CI: 0.3, 1.0) during the first transmission wave by February 14, 2020 while the overall R based on the cluster size distribution as of March 17, 2020 was estimated at 0.6 (95% CI: 0.4, 1.02). The overall mean reporting delay was estimated at 6.4 days (95% CI: 5.8, 6.9), but it was shorter among imported cases compared to local cases (mean 4.3 vs. 7.6 days, Wilcoxon test, p<0.001). Conclusion: The trajectory of the reproduction number in Singapore underscores the significant effects of successful containment efforts in Singapore, but it also suggests the need to sustain social distancing and active case finding efforts to stomp out all active chains of transmission.

20.
BMC Med ; 18(1): 166, 2020 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-32493466

RESUMEN

BACKGROUND: As of March 31, 2020, the ongoing COVID-19 epidemic that started in China in December 2019 is now generating local transmission around the world. The geographic heterogeneity and associated intervention strategies highlight the need to monitor in real time the transmission potential of COVID-19. Singapore provides a unique case example for monitoring transmission, as there have been multiple disease clusters, yet transmission remains relatively continued. METHODS: Here we estimate the effective reproduction number, Rt, of COVID-19 in Singapore from the publicly available daily case series of imported and autochthonous cases by date of symptoms onset, after adjusting the local cases for reporting delays as of March 17, 2020. We also derive the reproduction number from the distribution of cluster sizes using a branching process analysis that accounts for truncation of case counts. RESULTS: The local incidence curve displays sub-exponential growth dynamics, with the reproduction number following a declining trend and reaching an estimate at 0.7 (95% CI 0.3, 1.0) during the first transmission wave by February 14, 2020, while the overall R based on the cluster size distribution as of March 17, 2020, was estimated at 0.6 (95% CI 0.4, 1.02). The overall mean reporting delay was estimated at 6.4 days (95% CI 5.8, 6.9), but it was shorter among imported cases compared to local cases (mean 4.3 vs. 7.6 days, Wilcoxon test, p < 0.001). CONCLUSION: The trajectory of the reproduction number in Singapore underscores the significant effects of successful containment efforts in Singapore, but it also suggests the need to sustain social distancing and active case finding efforts to stomp out all active chains of transmission.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus/transmisión , Neumonía Viral/transmisión , COVID-19 , Infecciones por Coronavirus/epidemiología , Humanos , Pandemias , Neumonía Viral/epidemiología , SARS-CoV-2 , Singapur/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...