Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Hum Neurosci ; 17: 1240937, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37746055

RESUMEN

Introduction: Several studies have found changes in the organization of the primary somatosensory cortex (SI) after amputation. This SI reorganization was mainly investigated by stimulating neighboring areas to amputation. Unexpectedly, the somatosensory representation of the deafferented limb has rarely been directly tested. Methods: We stimulated the truncated peroneal nerve in 24 unilateral transtibial amputees and 15 healthy controls. The stimulation intensity was adjusted to make the elicited percept comparable between both stimulation sides. Neural sources of the somatosensory-evoked magnetic fields (SEFs) to peroneal stimulation were localized in the contralateral foot/leg areas of SI in 19 patients and 14 healthy controls. Results: We demonstrated the activation of functionally preserved cortical representations of amputated lower limbs. None of the patients reported evoked phantom limb pain (PLP) during stimulation. Stimulation that evoked perceptions in the foot required stronger intensities on the amputated side than on the intact side. In addition to this, stronger stimulation intensities were required for amputees than for healthy controls. Exploratorily, PLP intensity was neither associated with stimulation intensity nor dipole strength nor with differences in Euclidean distances (between SEF sources of the healthy peroneus and mirrored SEF sources of the truncated peroneus). Discussion: Our results provide hope that the truncated nerve may be used to establish both motor control and somatosensory feedback via the nerve trunk when a permanently functional connection between the nerve trunk and the prosthesis becomes available.

2.
Front Neurol ; 9: 270, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29755399

RESUMEN

Phantom limb pain (PLP) develops in most patients with lower limb amputation. Changes in the peripheral and central nervous system (CNS) are hypothesized to contribute to PLP. Based on ideas to modify neural reorganization within the CNS, the aim of the study was to test, whether prostheses with somatosensory feedback might help to reduce PLP, and increase the functionality of movement with a prosthesis. We therefore equipped the prostheses of 14 lower leg amputees with a simple to use feedback system that provides electrocutaneous feedback to patients' thigh whenever the foot and toes of the prosthesis touch the ground. Two weeks of training with such a feedback prosthesis reduced PLP, increased the functional use of the prosthesis, and increased patients' satisfaction with prosthesis use. We found a significant overall reduction of PLP during the course of the training period. Most patients reported lower PLP intensities at the end of the day while before training they have usually experienced maximal PLP intensities. Furthermore, patients also reported larger walking distances and more stable walking and better posture control while walking on and across a bumpy or soft ground. After training, the majority of participants (9/14) preferred such a feedback system over no feedback. This study extends former observations of a similar training procedure with arm amputees who used a similar feedback training to improve the functionality of an arm prosthesis in manipulating and grasping objects.

3.
Pain ; 159(7): 1289-1296, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29554015

RESUMEN

A comprehensive functional recovery is one of the criteria for successful replantation of an amputated limb. Functionality of a replanted limb is strongly dependent on its regained sensibility. In previous studies concerning the sensibility of replanted limbs, only a few somatosensory submodalities were examined in small samples. The purpose of this study is to provide a full pattern of somatosensory symptoms after replantation. Quantitative sensory testing was performed according to a standardized protocol in a sample of 15 patients who underwent replantation of their upper limb proximal to the radiocarpal joint (macroreplantation). Results indicate that most of these patients showed a specific somatosensory profile characterized by thermal and mechanical hypoesthesia and hyperalgesia in response to pressure pain, whereas no single case of hyperalgesia to heat pain occurred. This distinct profile of impaired somatosensation shares some features of the somatosensory profile of neuropathic pain syndromes. Patients' limbs that were replanted many years before the present quantitative sensory testing showed more sensory deficits than patients with more recent replantations. This knowledge might be helpful in the development of more specific and more successful rehabilitation programs with replanted patients and improves the behavioral function of the replanted limb.


Asunto(s)
Amputación Traumática/fisiopatología , Hiperalgesia/fisiopatología , Conducción Nerviosa/fisiología , Neuralgia/fisiopatología , Umbral del Dolor/fisiología , Recuperación de la Función/fisiología , Adolescente , Adulto , Anciano , Amputación Traumática/complicaciones , Amputación Traumática/cirugía , Femenino , Humanos , Hiperalgesia/etiología , Masculino , Persona de Mediana Edad , Neuralgia/etiología , Estimulación Física , Percepción del Tacto/fisiología , Adulto Joven
4.
Cereb Cortex ; 27(9): 4564-4569, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28119344

RESUMEN

Penfield and Rasmussen's homunculus is the valid map of the neural body representation of nearly each textbook of biology, physiology, and neuroscience. The somatosensory homunculus places the foot representation on the mesial surface of the postcentral gyrus followed by the representations of the lower leg and the thigh in superio-lateral direction. However, this strong homuncular organization contradicts the "dermatomal" organization of spinal nerves. We used somatosensory-evoked magnetic fields and source analysis to study the leg's neural representation in the primary somatosensory cortex (SI). We show that the representation of the back of the thigh is located inferior to the foot's representation in SI whereas the front of the thigh is located laterally to the foot's representation. This observation indicates that the localization of the leg in SI rather follows the dermatomal organization of spinal nerves than the typical map of neighboring body parts as depicted in Penfield and Rasmussen's illustration of the somatosensory homunculus.


Asunto(s)
Potenciales Evocados Somatosensoriales/fisiología , Pie/fisiología , Corteza Somatosensorial/fisiología , Adulto , Mapeo Encefálico , Femenino , Humanos , Magnetoencefalografía/métodos , Masculino , Estimulación Física/métodos , Adulto Joven
5.
Front Hum Neurosci ; 10: 521, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27799904

RESUMEN

Chronic low back pain (CLBP) was shown to be associated with longer reflex response latencies of trunk muscles during external upper limb perturbations. One theoretical, but rarely investigated possibility for longer reflex latencies might be related to modulated somatosensory information processing. Therefore, the present study investigated somatosensory evoked potentials (SEPs) to median nerve stimulation in CLBP patients and healthy controls (HC). Latencies of the peripheral N9 SEP component were used as the primary outcome. In addition, latencies and amplitudes of the central N20 SEP component, sensory thresholds, motor thresholds and nerve conduction velocity were also analyzed in CLBP patients and HC. There is a trend for the CLBP patients to exhibit longer N9 latencies at the ipsilateral Erb's point compared to HC. This trend is substantiated by significantly longer N9 latencies in CLBP patients compared to normative data. None of the other parameters showed any significant difference between CLBP patients and HC. Overall, our data indicate small differences of the peripheral N9 SEP component; however, these differences cannot explain the reflex delay observed in CLBP patients. While it was important to rule out the contribution of early somatosensory processing and to elucidate its contribution to the delayed reflex responses in CLBP patients, further research is needed to find the primary source(s) of time-delayed reflexes in CLBP.

6.
Brain ; 137(Pt 3): 757-69, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24480484

RESUMEN

With the development of microsurgical techniques, replantation has become a feasible alternative to stump treatment after the amputation of an extremity. It is known that amputation often induces phantom limb pain and cortical reorganization within the corresponding somatosensory areas. However, whether replantation reduces the risk of comparable persisting pain phenomena as well as reorganization of the primary somatosensory cortex is still widely unknown. Therefore, the present study aimed to investigate the potential development of persistent pain and cortical reorganization of the hand and lip areas within the sensory cortex by means of magnetoencephalographic dipole analyses after replantation of a traumatically amputated upper limb proximal to the radiocarpal joint. Cortical reorganization was investigated in 13 patients with limb replantation using air puff stimulation of the phalanges of both thumbs and both corners of the lower lip. Displacement of the centre of gravity of lip and thumb representations and increased cortical activity were found in the limb and face areas of the primary somatosensory cortex contralateral to the replanted arm when compared to the ipsilateral hemisphere. Thus, cortical reorganization in the primary somatosensory cortex also occurs after replantation of the upper extremity. Patients' reports of pain in the replanted body part were negatively correlated with the amount of cortical reorganization, i.e. the more pain the patients reported, the less reorganization of the subjects' hand representation within the primary somatosensory cortex was observed. Longitudinal studies in patients after macroreplantation are necessary to assess whether the observed reorganization in the primary somatosensory cortex is a result of changes within the representation of the replanted arm and/or neighbouring representations and to assess the relationship between the development of persistent pain and reorganization.


Asunto(s)
Mano/fisiopatología , Magnetoencefalografía/métodos , Corteza Motora/fisiopatología , Plasticidad Neuronal/fisiología , Dolor/fisiopatología , Corteza Prefrontal/fisiopatología , Reimplantación , Adulto , Anciano , Amputación Traumática/cirugía , Femenino , Humanos , Labio/inervación , Magnetoencefalografía/instrumentación , Masculino , Persona de Mediana Edad , Dimensión del Dolor , Adulto Joven
7.
Front Hum Neurosci ; 7: 311, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23805096

RESUMEN

The experience of strong phantom limb pain (PLP) in arm amputees was previously shown to be associated with structural neural plasticity in parts of the cortex that belong to dorsal and ventral visual streams. It has been speculated that this plasticity results from the extensive use of a functional prosthesis which is associated with increased visual feedback to control the artificial hand. To test this hypothesis, we reanalyzed data of cortical volumes of 21 upper limb amputees and tested the association between the amount of use of the hand prosthesis and cortical volume plasticity. On the behavioral level, we found no relation between PLP and the amount of prosthesis use for the whole patient group. However, by subdividing the patient group into patients with strong PLP and those with low to medium PLP, stronger pain was significantly associated with less prosthesis use whereas the group with low PLP did not show such an association. Most plasticity of cortical volume was identified within the dorsal stream. The more the patients that suffered from strong PLP used their prosthesis, the smaller was the volume of their posterior parietal cortex. Our data indicate a relationship between prosthesis use and cortical plasticity of the visual stream. This plasticity might present a brain adaptation process to new movement and coordination patterns needed to guide an artificial hand.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA