Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Nucleic Acids Res ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39175109

RESUMEN

Most heritable diseases are polygenic. To comprehend the underlying genetic architecture, it is crucial to discover the clinically relevant epistatic interactions (EIs) between genomic single nucleotide polymorphisms (SNPs) (1-3). Existing statistical computational methods for EI detection are mostly limited to pairs of SNPs due to the combinatorial explosion of higher-order EIs. With NeEDL (network-based epistasis detection via local search), we leverage network medicine to inform the selection of EIs that are an order of magnitude more statistically significant compared to existing tools and consist, on average, of five SNPs. We further show that this computationally demanding task can be substantially accelerated once quantum computing hardware becomes available. We apply NeEDL to eight different diseases and discover genes (affected by EIs of SNPs) that are partly known to affect the disease, additionally, these results are reproducible across independent cohorts. EIs for these eight diseases can be interactively explored in the Epistasis Disease Atlas (https://epistasis-disease-atlas.com). In summary, NeEDL demonstrates the potential of seamlessly integrated quantum computing techniques to accelerate biomedical research. Our network medicine approach detects higher-order EIs with unprecedented statistical and biological evidence, yielding unique insights into polygenic diseases and providing a basis for the development of improved risk scores and combination therapies.

2.
Nat Methods ; 21(8): 1444-1453, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39122953

RESUMEN

Machine learning methods for extracting patterns from high-dimensional data are very important in the biological sciences. However, in certain cases, real-world applications cannot confirm the reported prediction performance. One of the main reasons for this is data leakage, which can be seen as the illicit sharing of information between the training data and the test data, resulting in performance estimates that are far better than the performance observed in the intended application scenario. Data leakage can be difficult to detect in biological datasets due to their complex dependencies. With this in mind, we present seven questions that should be asked to prevent data leakage when constructing machine learning models in biological domains. We illustrate the usefulness of our questions by applying them to nontrivial examples. Our goal is to raise awareness of potential data leakage problems and to promote robust and reproducible machine learning-based research in biology.


Asunto(s)
Aprendizaje Automático , Humanos , Biología Computacional/métodos , Algoritmos
3.
EMBO Rep ; 25(8): 3406-3431, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38937629

RESUMEN

The EMT-transcription factor ZEB1 is heterogeneously expressed in tumor cells and in cancer-associated fibroblasts (CAFs) in colorectal cancer (CRC). While ZEB1 in tumor cells regulates metastasis and therapy resistance, its role in CAFs is largely unknown. Combining fibroblast-specific Zeb1 deletion with immunocompetent mouse models of CRC, we observe that inflammation-driven tumorigenesis is accelerated, whereas invasion and metastasis in sporadic cancers are reduced. Single-cell transcriptomics, histological characterization, and in vitro modeling reveal a crucial role of ZEB1 in CAF polarization, promoting myofibroblastic features by restricting inflammatory activation. Zeb1 deficiency impairs collagen deposition and CAF barrier function but increases NFκB-mediated cytokine production, jointly promoting lymphocyte recruitment and immune checkpoint activation. Strikingly, the Zeb1-deficient CAF repertoire sensitizes to immune checkpoint inhibition, offering a therapeutic opportunity of targeting ZEB1 in CAFs and its usage as a prognostic biomarker. Collectively, we demonstrate that ZEB1-dependent plasticity of CAFs suppresses anti-tumor immunity and promotes metastasis.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias Colorrectales , Inmunoterapia , Inflamación , Homeobox 1 de Unión a la E-Box con Dedos de Zinc , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/terapia , Neoplasias Colorrectales/inmunología , Animales , Ratones , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Humanos , Inflamación/metabolismo , Inflamación/genética , Inflamación/patología , Inmunoterapia/métodos , Regulación Neoplásica de la Expresión Génica , Fibroblastos/metabolismo , Línea Celular Tumoral , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Transición Epitelial-Mesenquimal/genética
4.
Nucleic Acids Res ; 52(W1): W481-W488, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38783119

RESUMEN

In recent decades, the development of new drugs has become increasingly expensive and inefficient, and the molecular mechanisms of most pharmaceuticals remain poorly understood. In response, computational systems and network medicine tools have emerged to identify potential drug repurposing candidates. However, these tools often require complex installation and lack intuitive visual network mining capabilities. To tackle these challenges, we introduce Drugst.One, a platform that assists specialized computational medicine tools in becoming user-friendly, web-based utilities for drug repurposing. With just three lines of code, Drugst.One turns any systems biology software into an interactive web tool for modeling and analyzing complex protein-drug-disease networks. Demonstrating its broad adaptability, Drugst.One has been successfully integrated with 21 computational systems medicine tools. Available at https://drugst.one, Drugst.One has significant potential for streamlining the drug discovery process, allowing researchers to focus on essential aspects of pharmaceutical treatment research.


Asunto(s)
Reposicionamiento de Medicamentos , Programas Informáticos , Reposicionamiento de Medicamentos/métodos , Humanos , Internet , Descubrimiento de Drogas/métodos , Biología de Sistemas/métodos , Biología Computacional/métodos
6.
Brief Bioinform ; 25(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38446741

RESUMEN

Identifying protein-protein interactions (PPIs) is crucial for deciphering biological pathways. Numerous prediction methods have been developed as cheap alternatives to biological experiments, reporting surprisingly high accuracy estimates. We systematically investigated how much reproducible deep learning models depend on data leakage, sequence similarities and node degree information, and compared them with basic machine learning models. We found that overlaps between training and test sets resulting from random splitting lead to strongly overestimated performances. In this setting, models learn solely from sequence similarities and node degrees. When data leakage is avoided by minimizing sequence similarities between training and test set, performances become random. Moreover, baseline models directly leveraging sequence similarity and network topology show good performances at a fraction of the computational cost. Thus, we advocate that any improvements should be reported relative to baseline methods in the future. Our findings suggest that predicting PPIs remains an unsolved task for proteins showing little sequence similarity to previously studied proteins, highlighting that further experimental research into the 'dark' protein interactome and better computational methods are needed.


Asunto(s)
Aprendizaje Automático
7.
Bioinform Adv ; 4(1): vbae034, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38505804

RESUMEN

Summary: Diseases can be caused by molecular perturbations that induce specific changes in regulatory interactions and their coordinated expression, also referred to as network rewiring. However, the detection of complex changes in regulatory connections remains a challenging task and would benefit from the development of novel nonparametric approaches. We develop a new ensemble method called BoostDiff (boosted differential regression trees) to infer a differential network discriminating between two conditions. BoostDiff builds an adaptively boosted (AdaBoost) ensemble of differential trees with respect to a target condition. To build the differential trees, we propose differential variance improvement as a novel splitting criterion. Variable importance measures derived from the resulting models are used to reflect changes in gene expression predictability and to build the output differential networks. BoostDiff outperforms existing differential network methods on simulated data evaluated in four different complexity settings. We then demonstrate the power of our approach when applied to real transcriptomics data in COVID-19, Crohn's disease, breast cancer, prostate adenocarcinoma, and stress response in Bacillus subtilis. BoostDiff identifies context-specific networks that are enriched with genes of known disease-relevant pathways and complements standard differential expression analyses. Availability and implementation: BoostDiff is available at https://github.com/scibiome/boostdiff_inference.

8.
medRxiv ; 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-38076997

RESUMEN

Most heritable diseases are polygenic. To comprehend the underlying genetic architecture, it is crucial to discover the clinically relevant epistatic interactions (EIs) between genomic single nucleotide polymorphisms (SNPs)1-3. Existing statistical computational methods for EI detection are mostly limited to pairs of SNPs due to the combinatorial explosion of higher-order EIs. With NeEDL (network-based epistasis detection via local search), we leverage network medicine to inform the selection of EIs that are an order of magnitude more statistically significant compared to existing tools and consist, on average, of five SNPs. We further show that this computationally demanding task can be substantially accelerated once quantum computing hardware becomes available. We apply NeEDL to eight different diseases and discover genes (affected by EIs of SNPs) that are partly known to affect the disease, additionally, these results are reproducible across independent cohorts. EIs for these eight diseases can be interactively explored in the Epistasis Disease Atlas (https://epistasis-disease-atlas.com). In summary, NeEDL is the first application that demonstrates the potential of seamlessly integrated quantum computing techniques to accelerate biomedical research. Our network medicine approach detects higher-order EIs with unprecedented statistical and biological evidence, yielding unique insights into polygenic diseases and providing a basis for the development of improved risk scores and combination therapies.

9.
Brief Bioinform ; 24(6)2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37985453

RESUMEN

Gene regulatory networks (GRNs) and gene co-expression networks (GCNs) allow genome-wide exploration of molecular regulation patterns in health and disease. The standard approach for obtaining GRNs and GCNs is to infer them from gene expression data, using computational network inference methods. However, since network inference methods are usually applied on aggregate data, distortion of the networks by demographic confounders might remain undetected, especially because gene expression patterns are known to vary between different demographic groups. In this paper, we present a computational framework to systematically evaluate the influence of demographic confounders on network inference from gene expression data. Our framework compares similarities between networks inferred for different demographic groups with similarity distributions obtained for random splits of the expression data. Moreover, it allows to quantify to which extent demographic groups are represented by networks inferred from the aggregate data in a confounder-agnostic way. We apply our framework to test four widely used GRN and GCN inference methods as to their robustness w. r. t. confounding by age, ethnicity and sex in cancer. Our findings based on more than $ {44000}$ inferred networks indicate that age and sex confounders play an important role in network inference for certain cancer types, emphasizing the importance of incorporating an assessment of the effect of demographic confounders into network inference workflows. Our framework is available as a Python package on GitHub: https://github.com/bionetslab/grn-confounders.


Asunto(s)
Redes Reguladoras de Genes , Neoplasias , Humanos , Neoplasias/genética , Demografía , Algoritmos
10.
Acta Neuropathol Commun ; 11(1): 129, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37559109

RESUMEN

Focal Cortical Dysplasia (FCD) is a frequent cause of drug-resistant focal epilepsy in children and young adults. The international FCD classifications of 2011 and 2022 have identified several clinico-pathological subtypes, either occurring isolated, i.e., FCD ILAE Type 1 or 2, or in association with a principal cortical lesion, i.e., FCD Type 3. Here, we addressed the DNA methylation signature of a previously described new subtype of FCD 3D occurring in the occipital lobe of very young children and microscopically defined by neuronal cell loss in cortical layer 4. We studied the DNA methylation profile using 850 K BeadChip arrays in a retrospective cohort of 104 patients with FCD 1 A, 2 A, 2B, 3D, TLE without FCD, and 16 postmortem specimens without neurological disorders as controls, operated in China or Germany. DNA was extracted from formalin-fixed paraffin-embedded tissue blocks with microscopically confirmed lesions, and DNA methylation profiles were bioinformatically analyzed with a recently developed deep learning algorithm. Our results revealed a distinct position of FCD 3D in the DNA methylation map of common FCD subtypes, also different from non-FCD epilepsy surgery controls or non-epileptic postmortem controls. Within the FCD 3D cohort, the DNA methylation signature separated three histopathology subtypes, i.e., glial scarring around porencephalic cysts, loss of layer 4, and Rasmussen encephalitis. Differential methylation in FCD 3D with loss of layer 4 mapped explicitly to biological pathways related to neurodegeneration, biogenesis of the extracellular matrix (ECM) components, axon guidance, and regulation of the actin cytoskeleton. Our data suggest that DNA methylation signatures in cortical malformations are not only of diagnostic value but also phenotypically relevant, providing the molecular underpinnings of structural and histopathological features associated with epilepsy. Further studies will be necessary to confirm these results and clarify their functional relevance and epileptogenic potential in these difficult-to-treat children.


Asunto(s)
Epilepsia Refractaria , Epilepsia , Displasia Cortical Focal , Malformaciones del Desarrollo Cortical , Niño , Adulto Joven , Humanos , Preescolar , Estudios Retrospectivos , Malformaciones del Desarrollo Cortical/diagnóstico por imagen , Malformaciones del Desarrollo Cortical/genética , Metilación de ADN , Epilepsia/genética , Epilepsia Refractaria/patología , Imagen por Resonancia Magnética
11.
ArXiv ; 2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37332567

RESUMEN

In recent decades, the development of new drugs has become increasingly expensive and inefficient, and the molecular mechanisms of most pharmaceuticals remain poorly understood. In response, computational systems and network medicine tools have emerged to identify potential drug repurposing candidates. However, these tools often require complex installation and lack intuitive visual network mining capabilities. To tackle these challenges, we introduce Drugst.One, a platform that assists specialized computational medicine tools in becoming user-friendly, web-based utilities for drug repurposing. With just three lines of code, Drugst.One turns any systems biology software into an interactive web tool for modeling and analyzing complex protein-drug-disease networks. Demonstrating its broad adaptability, Drugst.One has been successfully integrated with 21 computational systems medicine tools. Available at https://drugst.one, Drugst.One has significant potential for streamlining the drug discovery process, allowing researchers to focus on essential aspects of pharmaceutical treatment research.

12.
Bioinformatics ; 39(6)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37233198

RESUMEN

SUMMARY: We present ROBUST-Web which implements our recently presented ROBUST disease module mining algorithm in a user-friendly web application. ROBUST-Web features seamless downstream disease module exploration via integrated gene set enrichment analysis, tissue expression annotation, and visualization of drug-protein and disease-gene links. Moreover, ROBUST-Web includes bias-aware edge costs for the underlying Steiner tree model as a new algorithmic feature, which allow to correct for study bias in protein-protein interaction networks and further improves the robustness of the computed modules. AVAILABILITY AND IMPLEMENTATION: Web application: https://robust-web.net. Source code of web application and Python package with new bias-aware edge costs: https://github.com/bionetslab/robust-web, https://github.com/bionetslab/robust_bias_aware.


Asunto(s)
Algoritmos , Programas Informáticos , Mapas de Interacción de Proteínas
13.
Nat Commun ; 14(1): 1662, 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36966134

RESUMEN

A long-term objective of network medicine is to replace our current, mainly phenotype-based disease definitions by subtypes of health conditions corresponding to distinct pathomechanisms. For this, molecular and health data are modeled as networks and are mined for pathomechanisms. However, many such studies rely on large-scale disease association data where diseases are annotated using the very phenotype-based disease definitions the network medicine field aims to overcome. This raises the question to which extent the biases mechanistically inadequate disease annotations introduce in disease association data distort the results of studies which use such data for pathomechanism mining. We address this question using global- and local-scale analyses of networks constructed from disease association data of various types. Our results indicate that large-scale disease association data should be used with care for pathomechanism mining and that analyses of such data should be accompanied by close-up analyses of molecular data for well-characterized patient cohorts.

14.
Brief Bioinform ; 23(4)2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35753693

RESUMEN

As the development of new drugs reaches its physical and financial limits, drug repurposing has become more important than ever. For mechanistically grounded drug repurposing, it is crucial to uncover the disease mechanisms and to detect clusters of mechanistically related diseases. Various methods for computing candidate disease mechanisms and disease clusters exist. However, in the absence of ground truth, in silico validation is challenging. This constitutes a major hurdle toward the adoption of in silico prediction tools by experimentalists who are often hesitant to carry out wet-lab validations for predicted candidate mechanisms without clearly quantified initial plausibility. To address this problem, we present DIGEST (in silico validation of disease and gene sets, clusterings or subnetworks), a Python-based validation tool available as a web interface (https://digest-validation.net), as a stand-alone package or over a REST API. DIGEST greatly facilitates in silico validation of gene and disease sets, clusterings or subnetworks via fully automated pipelines comprising disease and gene ID mapping, enrichment analysis, comparisons of shared genes and variants and background distribution estimation. Moreover, functionality is provided to automatically update the external databases used by the pipelines. DIGEST hence allows the user to assess the statistical significance of candidate mechanisms with regard to functional and genetic coherence and enables the computation of empirical $P$-values with just a few mouse clicks.


Asunto(s)
Programas Informáticos , Análisis por Conglomerados , Bases de Datos Factuales
15.
Bioinformatics ; 38(6): 1600-1606, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-34984440

RESUMEN

MOTIVATION: Disease module mining methods (DMMMs) extract subgraphs that constitute candidate disease mechanisms from molecular interaction networks such as protein-protein interaction (PPI) networks. Irrespective of the employed models, DMMMs typically include non-robust steps in their workflows, i.e. the computed subnetworks vary when running the DMMMs multiple times on equivalent input. This lack of robustness has a negative effect on the trustworthiness of the obtained subnetworks and is hence detrimental for the widespread adoption of DMMMs in the biomedical sciences. RESULTS: To overcome this problem, we present a new DMMM called ROBUST (robust disease module mining via enumeration of diverse prize-collecting Steiner trees). In a large-scale empirical evaluation, we show that ROBUST outperforms competing methods in terms of robustness, scalability and, in most settings, functional relevance of the produced modules, measured via KEGG (Kyoto Encyclopedia of Genes and Genomes) gene set enrichment scores and overlap with DisGeNET disease genes. AVAILABILITY AND IMPLEMENTATION: A Python 3 implementation and scripts to reproduce the results reported in this article are available on GitHub: https://github.com/bionetslab/robust, https://github.com/bionetslab/robust-eval. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Algoritmos , Árboles , Biología Computacional/métodos , Mapas de Interacción de Proteínas
16.
Methods Inf Med ; 61(S 01): e12-e27, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35062032

RESUMEN

BACKGROUND: Artificial intelligence (AI) has been successfully applied in numerous scientific domains. In biomedicine, AI has already shown tremendous potential, e.g., in the interpretation of next-generation sequencing data and in the design of clinical decision support systems. OBJECTIVES: However, training an AI model on sensitive data raises concerns about the privacy of individual participants. For example, summary statistics of a genome-wide association study can be used to determine the presence or absence of an individual in a given dataset. This considerable privacy risk has led to restrictions in accessing genomic and other biomedical data, which is detrimental for collaborative research and impedes scientific progress. Hence, there has been a substantial effort to develop AI methods that can learn from sensitive data while protecting individuals' privacy. METHOD: This paper provides a structured overview of recent advances in privacy-preserving AI techniques in biomedicine. It places the most important state-of-the-art approaches within a unified taxonomy and discusses their strengths, limitations, and open problems. CONCLUSION: As the most promising direction, we suggest combining federated machine learning as a more scalable approach with other additional privacy-preserving techniques. This would allow to merge the advantages to provide privacy guarantees in a distributed way for biomedical applications. Nonetheless, more research is necessary as hybrid approaches pose new challenges such as additional network or computation overhead.


Asunto(s)
Sistemas de Apoyo a Decisiones Clínicas , Privacidad , Inteligencia Artificial , Estudio de Asociación del Genoma Completo , Humanos , Aprendizaje Automático
17.
Gigascience ; 122022 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-37132521

RESUMEN

BACKGROUND: Eukaryotic gene expression is controlled by cis-regulatory elements (CREs), including promoters and enhancers, which are bound by transcription factors (TFs). Differential expression of TFs and their binding affinity at putative CREs determine tissue- and developmental-specific transcriptional activity. Consolidating genomic datasets can offer further insights into the accessibility of CREs, TF activity, and, thus, gene regulation. However, the integration and analysis of multimodal datasets are hampered by considerable technical challenges. While methods for highlighting differential TF activity from combined chromatin state data (e.g., chromatin immunoprecipitation [ChIP], ATAC, or DNase sequencing) and RNA sequencing data exist, they do not offer convenient usability, have limited support for large-scale data processing, and provide only minimal functionality for visually interpreting results. RESULTS: We developed TF-Prioritizer, an automated pipeline that prioritizes condition-specific TFs from multimodal data and generates an interactive web report. We demonstrated its potential by identifying known TFs along with their target genes, as well as previously unreported TFs active in lactating mouse mammary glands. Additionally, we studied a variety of ENCODE datasets for cell lines K562 and MCF-7, including 12 histone modification ChIP sequencing as well as ATAC and DNase sequencing datasets, where we observe and discuss assay-specific differences. CONCLUSION: TF-Prioritizer accepts ATAC, DNase, or ChIP sequencing and RNA sequencing data as input and identifies TFs with differential activity, thus offering an understanding of genome-wide gene regulation, potential pathogenesis, and therapeutic targets in biomedical research.


Asunto(s)
Lactancia , Factores de Transcripción , Animales , Ratones , Femenino , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Indonesia , Sitios de Unión/genética , Desoxirribonucleasas/metabolismo
18.
Genome Biol ; 22(1): 338, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34906207

RESUMEN

Aggregating transcriptomics data across hospitals can increase sensitivity and robustness of differential expression analyses, yielding deeper clinical insights. As data exchange is often restricted by privacy legislation, meta-analyses are frequently employed to pool local results. However, the accuracy might drop if class labels are inhomogeneously distributed among cohorts. Flimma ( https://exbio.wzw.tum.de/flimma/ ) addresses this issue by implementing the state-of-the-art workflow limma voom in a federated manner, i.e., patient data never leaves its source site. Flimma results are identical to those generated by limma voom on aggregated datasets even in imbalanced scenarios where meta-analysis approaches fail.


Asunto(s)
Expresión Génica , Privacidad , Investigación Biomédica , Redes de Comunicación de Computadores , Seguridad Computacional/legislación & jurisprudencia , Seguridad Computacional/normas , Bases de Datos Factuales/legislación & jurisprudencia , Bases de Datos Factuales/normas , Expresión Génica/ética , Genes , Regulación Gubernamental , Humanos , Aprendizaje Automático
19.
Nat Commun ; 12(1): 6848, 2021 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-34824199

RESUMEN

Traditional drug discovery faces a severe efficacy crisis. Repurposing of registered drugs provides an alternative with lower costs and faster drug development timelines. However, the data necessary for the identification of disease modules, i.e. pathways and sub-networks describing the mechanisms of complex diseases which contain potential drug targets, are scattered across independent databases. Moreover, existing studies are limited to predictions for specific diseases or non-translational algorithmic approaches. There is an unmet need for adaptable tools allowing biomedical researchers to employ network-based drug repurposing approaches for their individual use cases. We close this gap with NeDRex, an integrative and interactive platform for network-based drug repurposing and disease module discovery. NeDRex integrates ten different data sources covering genes, drugs, drug targets, disease annotations, and their relationships. NeDRex allows for constructing heterogeneous biological networks, mining them for disease modules, prioritizing drugs targeting disease mechanisms, and statistical validation. We demonstrate the utility of NeDRex in five specific use-cases.


Asunto(s)
Bases de Datos Factuales , Reposicionamiento de Medicamentos/métodos , Algoritmos , Biología Computacional , Enfermedad/clasificación , Enfermedad/genética , Humanos , Bases del Conocimiento , Flujo de Trabajo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA