Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 9(39): eadi8606, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37756408

RESUMEN

Graft-host mechanical mismatch has been a longstanding issue in clinical applications of synthetic scaffolds for soft tissue regeneration. Although numerous efforts have been devoted to resolve this grand challenge, the regenerative performance of existing synthetic scaffolds remains limited by slow tissue growth (comparing to autograft) and mechanical failures. We demonstrate a class of rationally designed flexible network scaffolds that can precisely replicate nonlinear mechanical responses of soft tissues and enhance tissue regeneration via reduced graft-host mechanical mismatch. Such flexible network scaffold includes a tubular network frame containing inversely engineered curved microstructures to produce desired mechanical properties, with an electrospun ultrathin film wrapped around the network to offer a proper microenvironment for cell growth. Using rat models with sciatic nerve defects or Achilles tendon injuries, our network scaffolds show regenerative performances evidently superior to that of clinically approved electrospun conduit scaffolds and achieve similar outcomes to autologous nerve transplantation in prevention of target organ atrophy and recovery of static sciatic index.


Asunto(s)
Biomimética , Películas Cinematográficas , Animales , Ratas , Proliferación Celular , Atrofia , Ciclo Celular
2.
Chem Rev ; 123(18): 11137-11189, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37676059

RESUMEN

Architected flexible electronic devices with rationally designed 3D geometries have found essential applications in biology, medicine, therapeutics, sensing/imaging, energy, robotics, and daily healthcare. Mechanically-guided 3D assembly methods, exploiting mechanics principles of materials and structures to transform planar electronic devices fabricated using mature semiconductor techniques into 3D architected ones, are promising routes to such architected flexible electronic devices. Here, we comprehensively review mechanically-guided 3D assembly methods for architected flexible electronics. Mainstream methods of mechanically-guided 3D assembly are classified and discussed on the basis of their fundamental deformation modes (i.e., rolling, folding, curving, and buckling). Diverse 3D interconnects and device forms are then summarized, which correspond to the two key components of an architected flexible electronic device. Afterward, structure-induced functionalities are highlighted to provide guidelines for function-driven structural designs of flexible electronics, followed by a collective summary of their resulting applications. Finally, conclusions and outlooks are given, covering routes to achieve extreme deformations and dimensions, inverse design methods, and encapsulation strategies of architected 3D flexible electronics, as well as perspectives on future applications.

3.
ACS Appl Mater Interfaces ; 15(18): 22553-22562, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37098745

RESUMEN

The ubiquitous solid-liquid systems in nature usually present an interesting mechanical property, the rate-dependent stiffness, which could be exploited for impact protection in flexible systems. Herein, a typical natural system, the durian peel, has been systematically characterized and studied, showing a solid-liquid dual-phase cellular structure. A bioinspired design of flexible impact-resistant composites is then proposed by combining 3D lattices and shear thickening fluids. The resulting dual-phase composites offer, simultaneously, low moduli (e.g., 71.9 kPa, lower than those of many reported soft composites) under quasi-static conditions and excellent energy absorption (e.g., 425.4 kJ/m3, which is close to those of metallic and glass-based lattices) upon dynamic impact. Numerical simulations based on finite element analyses were carried out to understand the enhanced buffering of the developed composites, unveiling a lattice-guided fluid-structure interaction mechanism. Such biomimetic lattice-based flexible impact-resistant composites hold promising potential for the development of next-generation flexible protection systems that can be used in wearable electronics and robotic systems.

4.
Science ; 379(6638): 1225-1232, 2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-36952411

RESUMEN

Cellular microstructures form naturally in many living organisms (e.g., flowers and leaves) to provide vital functions in synthesis, transport of nutrients, and regulation of growth. Although heterogeneous cellular microstructures are believed to play pivotal roles in their three-dimensional (3D) shape formation, programming 3D curved mesosurfaces with cellular designs remains elusive in man-made systems. We report a rational microlattice design that allows transformation of 2D films into programmable 3D curved mesosurfaces through mechanically guided assembly. Analytical modeling and a machine learning-based computational approach serve as the basis for shape programming and determine the heterogeneous 2D microlattice patterns required for target 3D curved surfaces. About 30 geometries are presented, including both regular and biological mesosurfaces. Demonstrations include a conformable cardiac electronic device, a stingray-like dual mode actuator, and a 3D electronic cell scaffold.

5.
Proc Natl Acad Sci U S A ; 119(49): e2215028119, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36442122

RESUMEN

The climbing microrobots have attracted growing attention due to their promising applications in exploration and monitoring of complex, unstructured environments. Soft climbing microrobots based on muscle-like actuators could offer excellent flexibility, adaptability, and mechanical robustness. Despite the remarkable progress in this area, the development of soft microrobots capable of climbing on flat/curved surfaces and transitioning between two different surfaces remains elusive, especially in open spaces. In this study, we address these challenges by developing voltage-driven soft small-scale actuators with customized 3D configurations and active stiffness adjusting. Combination of programmed strain distributions in liquid crystal elastomers (LCEs) and buckling-driven 3D assembly, guided by mechanics modeling, allows for voltage-driven, complex 3D-to-3D shape morphing (bending angle > 200°) at millimeter scales (from 1 to 10 mm), which is unachievable previously. These soft actuators enable development of morphable electroadhesive footpads that can conform to different curved surfaces and stiffness-variable smart joints that allow different locomotion gaits in a single microrobot. By integrating such morphable footpads and smart joints with a deformable body, we report a multigait, soft microrobot (length from 6 to 90 mm, and mass from 0.2 to 3 g) capable of climbing on surfaces with diverse shapes (e.g., flat plane, cylinder, wavy surface, wedge-shaped groove, and sphere) and transitioning between two distinct surfaces. We demonstrate that the microrobot could navigate from one surface to another, recording two corresponding ceilings when carrying an integrated microcamera. The developed soft microrobot can also flip over a barrier, survive extreme compression, and climb bamboo and leaf.


Asunto(s)
Elastómeros , Cristales Líquidos , Membrana Celular , Extremidades , Marcha
6.
Sci Adv ; 8(11): eabm3785, 2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35294232

RESUMEN

Elastic stretchability and function density represent two key figures of merits for stretchable inorganic electronics. Various design strategies have been reported to provide both high levels of stretchability and function density, but the function densities are mostly below 80%. While the stacked device layout can overcome this limitation, the soft elastomers used in previous studies could highly restrict the deformation of stretchable interconnects. Here, we introduce stacked multilayer network materials as a general platform to incorporate individual components and stretchable interconnects, without posing any essential constraint to their deformations. Quantitative analyses show a substantial enhancement (e.g., by ~7.5 times) of elastic stretchability of serpentine interconnects as compared to that based on stacked soft elastomers. The proposed strategy allows demonstration of a miniaturized electronic system (11 mm by 10 mm), with a moderate elastic stretchability (~20%) and an unprecedented areal coverage (~110%), which can serve as compass display, somatosensory mouse, and physiological-signal monitor.

7.
Adv Mater ; 33(37): e2102684, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34342056

RESUMEN

Three-dimensional (3D) flexible electronics represent an emerging area of intensive attention in recent years, owing to their broad-ranging applications in wearable electronics, flexible robots, tissue/cell scaffolds, among others. The widely adopted 3D conductive mesostructures in the functional device systems would inevitably undergo repetitive out-of-plane compressions during practical operations, and thus, anti-fatigue design strategies are of great significance to improve the reliability of 3D flexible electronics. Previous studies mainly focused on the fatigue failure behavior of planar ribbon-shaped geometries, while anti-fatigue design strategies and predictive failure criteria addressing 3D ribbon-shaped mesostructures are still lacking. This work demonstrates an anti-fatigue strategy to significantly prolong the fatigue life of 3D ribbon-shaped flexible electronics by switching the metal-dominated failure to desired polymer-dominated failure. Combined in situ measurements and computational studies allow the establishment of a failure criterion capable of accurately predicting fatigue lives under out-of-plane compressions, thereby providing useful guidelines for the design of anti-fatigue mesostructures with diverse 3D geometries. Two mechanically reliable 3D devices, including a resistance-type vibration sensor and a janus sensor capable of decoupled temperature measurements, serve as two demonstrative examples to highlight potential applications in long-term health monitoring and human-like robotic perception, respectively.


Asunto(s)
Electrónica , Diseño de Equipo/métodos , Humanos , Metales/química , Polímeros/química , Temperatura , Termometría/instrumentación , Dispositivos Electrónicos Vestibles
8.
Adv Sci (Weinh) ; 7(24): 2002368, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33344131

RESUMEN

The structuring of the metal-organic framework material ZIF-8 as films and membranes through the vapor-phase conversion of ZnO fractal nanoparticle networks is reported. The extrinsic porosity of the resulting materials can be tuned from 4% to 66%, and the film thickness can be controlled from 80 nm to 0.23 mm, for areas >100 cm2. Freestanding and pure metal-organic frameworks (MOF) membranes prepared this way are showcased as separators that minimize capacity fading in model Li-S batteries.

9.
Nano Lett ; 20(5): 3970-3977, 2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32343590

RESUMEN

Epsilon-near-zero (ENZ) materials offer unique properties for applications including optical clocking, nonlinear optics, and telecommunication. To date, the fabrication of ENZ materials at visible wavelengths relies mostly on the use of periodic structures, providing some manufacturing and material challenges. Here, we present the engineering of nonperiodic sodium tungsten bronzes (NaxWO3) metamaterials featuring ENZ properties in the visible spectrum. We showcase their use as efficient optical sensors, demonstrating a nonresonant sensing mechanism based on refractive index matching. Our optimized ENZ metamaterials display an unconventional blue-shift of the transmittance maximum to increasing refractive index of the surrounding environment, achieving sensitivity as high as 150 nm/RIU. Our theoretical and experimental investigations provide first insights on this sensing mechanism, establishing guidelines for the future engineering and implementation of efficient ENZ sensors. The unique optoelectronic properties demonstrated by this class of tunable NaxWO3 materials bear potential for various applications ranging from light-harvesting to optical photodetectors.

10.
ACS Appl Mater Interfaces ; 12(8): 9589-9599, 2020 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-32019296

RESUMEN

Transparent conductive oxides (TCOs) are highly desirable for numerous applications ranging from photovoltaics to light-emitting diodes and photoelectrochemical devices. Despite progress, it remains challenging to fabricate porous TCOs (pTCOs) that may provide, for instance, a hierarchical nanostructured morphology for the separation of photoexcited hole/electron couples. Here, we present a facile process for the fabrication of porous architectures of aluminum-doped zinc oxide (AZO), a low-cost and earth-abundant transparent conductive oxide. Three-dimensional nanostructured films of AZO with tunable porosities from 10 to 98% were rapidly self-assembled from flame-made nanoparticle aerosols. Successful Al doping was confirmed by X-ray photoemission spectroscopy, high-resolution transmission electron microscopy, elemental mapping, X-ray diffraction, and Fourier transform infrared spectroscopy. An optimal Al-doping level of 1% was found to induce the highest material conductivity, while a higher amount led to partial segregation and formation of aluminum oxide domains. A controllable semiconducting to conducting behavior with a resistivity change of more than 4 orders of magnitudes from about 3 × 102 to 9.4 × 106 Ω cm was observed by increasing the AZO film porosity from 10 to 98%. While the denser AZO morphologies may find immediate application as transparent electrodes, we demonstrate that the ultraporous semiconducting layers have potential as a light-driven gas sensor, showing a high response of 1.92-1 ppm of ethanol at room temperature. We believe that these tunable porous transparent conductive oxides and their scalable fabrication method may provide a highly performing material for future optoelectronic devices.

11.
Phys Chem Chem Phys ; 21(43): 24187-24193, 2019 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-31658307

RESUMEN

Halide perovskite materials are excellent light harvesters that have generated enormous interest for photovoltaic technology and an increasing number of other optoelectronic applications. Very recently, their use for miniaturized chemical sensors has shown a promising room-temperature response. Here, we present some insights on the use of CsPbBr2I (CPBI) perovskites for self-powered room-temperature sensing of several environmentally and medically relevant compounds demonstrating rapid detection of down to concentrations of 1 ppm. Notably, the photocurrent of these self-powered CPBI-based devices increases under exposure to both reducing (e.g. acetone, propane) and oxidizing (e.g. NO2, O2) gas molecules and decreases rapidly upon reverting to an inert atmosphere. In situ photoluminescence (PL) analysis of the CPBI during exposure to oxidizing molecules reveals a strongly increased PL intensity and longer lifetime indicating a prevalent role of CPBI trap states in the sensing mechanism. These findings provide new insights for the engineering of perovskite-based materials for their future chemical sensing applications.

12.
Nano Lett ; 19(7): 4391-4399, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31246030

RESUMEN

The lithium-sulfur (Li-S) system is a promising material for the next-generation of high energy density batteries with application extending from electrical vehicles to portable devices and aeronautics. Despite progress, the energy density of current Li-S technologies is still below that of conventional intercalation-type cathode materials due to limited stability and utilization efficiency at high sulfur loading. Here, we present a conducting polymer hydrogel integrated highly performing free-standing three-dimensional (3D) monolithic electrode architecture for Li-S batteries with superior electrochemical stability and energy density. The electrode layout consists of a highly conductive three-dimensional network of N,P codoped carbon with well-dispersed metal-organic framework nanodomains of ZIF-67 and HKUST-1. The hierarchical monolithic 3D carbon networks provide an excellent environment for charge and electrolyte transport as well as mechanical and chemical stability. The electrically integrated MOF nanodomains significantly enhance the sulfur loading and retention capabilities by inhibiting the release of lithium polysulfide specificities as well as improving the charge transfer efficiency at the electrolyte interface. Our optimal 3D carbon-HKUST-1 electrode architecture achieves a very high areal capacity of >16 mAh cm-2 and volumetric capacity (CV) of 1230.8 mAh cm-3 with capacity retention of 82% at 0.2C for over 300 cycles, providing an attractive candidate material for future high-energy density Li-S batteries.

13.
Adv Mater ; 30(30): e1800931, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29862583

RESUMEN

Advances in the understanding and fabrication of plasmonic nanostructures have led to a plethora of unprecedented optoelectronic and optochemical applications. Plasmon resonance has found widespread use in efficient optical transducers of refractive index changes in liquids. However, it has proven challenging to translate these achievements to the selective detection of gases, which typically adsorb non-specifically and induce refractive index changes below the detection limit. Here, it's shown that integration of tailored fractals of dielectric TiO2 nanoparticles on a plasmonic metasurface strongly enhances the interaction between the plasmonic field and volatile organic molecules and provides a means for their selective detection. Notably, this superior optical response is due to the enhancement of the interaction between the dielectric fractals and the plasmonic metasurface for thickness of up to 1.8 µm, much higher than the evanescent plasmonic near-field (≈30 nm) . Optimal dielectric-plasmonic structures allow measurements of changes in the refractive index of the gas mixture down to <8 × 10-6 at room temperature and selective identification of three exemplary volatile organic compounds. These findings provide a basis for the development of a novel family of dielectric-plasmonic materials with application extending from light harvesting and photocatalysts to contactless sensors for noninvasive medical diagnostics.

14.
Chempluschem ; 83(7): 569-576, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31950641

RESUMEN

Photoelectrochemical water splitting is a promising approach for the carbon-free production of hydrogen using sunlight. Here, robust and efficient WO3 photoanodes for water oxidation were synthesized by the scalable one-step flame synthesis of nanoparticle aerosols and direct gas-phase deposition. Nanostructured WO3 films with tunable thickness and band gap and controllable porosity were fabricated by controlling the aerosol deposition time, concentration, and temperature. Optimal WO3 films demonstrate superior water oxidation performance, reaching a current density of 0.91 mA at 1.24 V vs. reversible hydrogen electrode (RHE) and an incident photon-to-current conversion efficiency (IPCE) of ca. 61 % at 360 nm in 0.1 m H2 SO4 . Notably, it is found that the excellent performance of these WO3 nanostructures arises from the high in situ restructuring temperature (ca. 1000 °C), which increases oxygen vacancies and decreases charge recombination at the WO3 /electrolyte interface. These findings provide a scalable approach for the fabrication of efficient photoelectrodes based on WO3 and other metal oxides for light-driven water splitting.

15.
Small ; 14(7)2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29280263

RESUMEN

Hybrid halide perovskite is one of the promising light absorber and is intensively investigated for many optoelectronic applications. Here, the first prototype of a self-powered inorganic halides perovskite for chemical gas sensing at room temperature under visible-light irradiation is presented. These devices consist of porous network of CsPbBr3 (CPB) and can generate an open-circuit voltage of 0.87 V under visible-light irradiation, which can be used to detect various concentrations of O2 and parts per million concentrations of medically relevant volatile organic compounds such as acetone and ethanol with very quick response and recovery time. It is observed that O2 gas can passivate the surface trap sites in CPB and the ambipolar charge transport in the perovskite layer results in a distinct sensing mechanism compared with established semiconductors with symmetric electrical response to both oxidizing and reducing gases. The platform of CPB-based gas sensor provides new insights for the emerging area of wearable sensors for personalized and preventive medicine.

16.
Nanoscale ; 9(5): 2059-2067, 2017 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-28116395

RESUMEN

Visible-blind ultraviolet photodetectors are a promising emerging technology for the development of wide bandgap optoelectronic devices with greatly reduced power consumption and size requirements. A standing challenge is to improve the slow response time of these nanostructured devices. Here, we present a three-dimensional nanoscale heterojunction architecture for fast-responsive visible-blind UV photodetectors. The device layout consists of p-type NiO clusters densely packed on the surface of an ultraporous network of electron-depleted n-type ZnO nanoparticles. This 3D structure can detect very low UV light densities while operating with a near-zero power consumption of ca. 4 × 10-11 watts and a low bias of 0.2 mV. Most notably, heterojunction formation decreases the device rise and decay times by 26 and 20 times, respectively. These drastic enhancements in photoresponse dynamics are attributed to the stronger surface band bending and improved electron-hole separation of the nanoscale NiO/ZnO interface. These findings demonstrate a superior structural design and a simple, low-cost CMOS-compatible process for the engineering of high-performance wearable photodetectors.

17.
ACS Appl Mater Interfaces ; 9(3): 2606-2615, 2017 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-28032752

RESUMEN

Accurate detection of UV light by wearable low-power devices has many important applications including environmental monitoring, space to space communication, and defense. Here, we report the structural engineering of ultraporous ZnO nanoparticle networks for fabrication of very low-voltage high-performance UV photodetectors. A record high photo- to dark-current ratio of 3.3 × 105 and detectivity of 3.2 × 1012 Jones at an ultralow operation bias of 2 mV and low UV-light intensity of 86 µW·cm-2 are achieved by controlling the interplay between grain boundaries and surface depletion depth of ZnO nanoscale semiconductors. An optimal window of structural properties is determined by varying the particle size of ultraporous nanoparticle networks from 10 to 42 nm. We find that small electron-depleted nanoparticles (≤40 nm) are necessary to minimize the dark-current; however, the rise in photocurrent is tampered with decreasing particle size due to the increasing density of grain boundaries. These findings reveal that nanoparticles with a size close to twice their Debye length are required for high photo- to dark-current ratio and detectivity, while further decreasing their size decreases the photodetector performance.

18.
Adv Mater ; 27(29): 4336-43, 2015 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-26079322

RESUMEN

A hierarchical nano- and microstructured morphology for visible-blind UV photo-detectors is developed, which provides record-high milliampere photocurrents, nanoampere dark currents, and excellent selectivity to ultralow UV light intensities. This is a significant step toward the integration of high-performance UV photodetectors in wearable devices.


Asunto(s)
Nanopartículas/química , Rayos Ultravioleta , Óxido de Zinc/química , Electrones , Porosidad , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...