Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 53(14): 6275-6281, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38506644

RESUMEN

The detection of ascorbic acid (AA), dopamine (DA), and uric acid (UA) is not only of great significance in the areas of biomedicine and neurochemistry but also helpful in disease diagnosis and pathology research. Due to their diverse structures, designability, and large specific surface areas, metal-organic frameworks (MOFs) have recently caught considerable attention in the electrochemical field. Herein, a family of heterometallic MOFs with amino modification, MIL-125(Ti-Al)-xNH2 (x = 0%, 25%, 50%, 75%, and 100%), were synthesized and employed as electrochemical sensors for the detection of AA, DA, and UA. Among them, MIL-125(Ti-Al)-75%NH2 exhibited the most promising electrochemical behavior with 40% doping of carbon black in 0.1 M PBS (pH = 7.10), which displayed individual detection performance with wide linear detection ranges (1.0-6.5 mM for AA, 5-100 µM for DA and 5-120 µM for UA) and low limits of detection (0.215 mM for AA, 0.086 µM for DA, and 0.876 µM for UA, S/N = 3). Furthermore, the as-prepared MIL-125(Ti-Al)-75%NH2/GCE provided a promising platform for future application in real sample analysis, owing to its excellent anti-interference performance and good stability.


Asunto(s)
Dopamina , Estructuras Metalorgánicas , Dopamina/análisis , Ácido Úrico/análisis , Ácido Ascórbico/química , Electrodos , Titanio , Técnicas Electroquímicas
2.
J Am Chem Soc ; 137(22): 7169-77, 2015 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-25933041

RESUMEN

Two novel polyoxometalate (POM)-based metal-organic frameworks (MOFs), [TBA]3[ε-PMo(V)8Mo(VI)4O36(OH)4Zn4][BTB]4/3·xGuest (NENU-500, BTB = benzene tribenzoate, TBA(+) = tetrabutylammonium ion) and [TBA]3[ε-PMo(V)8Mo(VI)4O37(OH)3Zn4][BPT] (NENU-501, BPT = [1,1'-biphenyl]-3,4',5-tricarboxylate), were isolated. In these compounds, the POM fragments serving as nodes were directly connected with organic ligands giving rise to three-dimensional (3D) open frameworks. The two anionic frameworks were balanced by TBA(+) ions residing inside the open channels. They exhibit not only good stability in air but also tolerance to acidic and basic media. Furthermore, they were employed as electrocatalysts for the hydrogen evolution reaction (HER) owing to the combination of the redox activity of a POM unit and the porosity of a MOF. Meanwhile, the HER activities of ε(trim)(4/3), NENU-5, and HKUST-1 were also studied for comparison. Remarkably, as a 3D hydrogen-evolving cathode operating in acidic electrolytes, NENU-500 exhibits the highest activity among all MOF materials. It shows an onset overpotential of 180 mV and a Tafel slope of 96 mV·dec(-1), and the catalytic current density can approach 10 mA·cm(-2) at an overpotential of 237 mV. Moreover, NENU-500 and NENU-501 maintain their electrocatalytic activities after 2000 cycles.

3.
Anal Chim Acta ; 673(1): 88-94, 2010 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-20630182

RESUMEN

A new ordered mesoporous carbon (OMC) composite modified electrode was fabricated for the first time. Binuclear cobalt phthalocyaninehexasulfonate sodium salt (bi-CoPc) can be adsorbed onto didodecyldimethylammonium bromide (DDAB)/OMC film by ion exchange. UV-vis spectroscopy, scanning electron microscopy (SEM) and electrochemical methods were used to characterize the composite film. The cyclic voltammograms demonstrate that the charge transfer of bi-CoPc is promoted by the presence of OMC. Further study indicated that bi-CoPc/DDAB/OMC film is the excellent electrocatalyst for the electrochemical reduction of oxygen in a neutral aqueous solution and hemoglobin (Hb) at lower concentrations. Additionally, as an amperometric 2-mercaptoethanol (2-ME) sensor, this modified electrode shows a wider linear range (2.5 x 10(-6) to 1.4 x 10(-4) M), high sensitivity (16.5 microA mM(-1)) and low detection limit of 0.6 microM (S/N=3). All these confirm the fact that the new composite film may have wide potential applications in biofuel cells, biological and environmental sensors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...