Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Foods ; 12(18)2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37761181

RESUMEN

The fermentation process can be affected when the starter culture enters the viable but nonculturable (VBNC) state. Therefore, it is of interest to investigate how VBNC cells change physiologically. Lacticaseibacillus (L.) paracasei Zhang is both a probiotic and a starter strain. This study aimed to investigate the metabolomic differences between VBNC and recovered L. paracasei Zhang cells. First, L. paracasei Zhang was induced to enter the VBNC state by keeping the cells in a liquid de Man-Rogosa-Sharpe (MRS) medium at 4 °C for 220 days. Flow cytometry was used to sort the induced VBNC cells, and three different types of culture media (MRS medium, skim milk with 1% yeast extract, and skim milk) were used for cell resuscitation. Cell growth responses in the three types of recovery media suggested that the liquid MRS medium was the most effective in reversing the VBNC state in L. paracasei Zhang. Metabolomics analysis revealed 25 differential metabolites from five main metabolite classes (amino acid, carbohydrate, lipid, vitamin, and purine and pyrimidine). The levels of L-cysteine, L-alanine, L-lysine, and L-arginine notably increased in the revived cells, while cellulose, alginose, and guanine significantly decreased. This study confirmed that VBNC cells had an altered physiology.

2.
Microorganisms ; 11(5)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37317241

RESUMEN

This study aimed to investigate the molecular composition of a viable but nonculturable (VBNC) state of a probiotic strain, Lacticaseibacillus paracasei Zhang (L. paracasei Zhang), using single-cell Raman spectroscopy (SCRS). Fluorescent microcopy with live/dead cell staining (propidium iodide and SYTO 9), plate counting, and scanning electron microscopy were used in combination to observe bacteria in an induced VBNC state. We induced the VBNC state by incubating the cells in de Man, Rogosa, and Sharpe broth (MRS) at 4 °C. Cells were sampled for subsequent analyses before VBNC induction, during it, and up to 220 days afterwards. We found that, after cold incubation for 220 days, the viable plate count was zero, but active cells could still be observed (as green fluorescent cells) under a fluorescence microscope, indicating that Lacticaseibacillus paracasei Zhang entered the VBNC state under these conditions. Scanning electron microscopy revealed the altered ultra-morphology of the VBNC cells, characterized by a shortened cell length and a wrinkled cell surface. Principal component analysis of the Raman spectra profiles revealed obvious differences in the intracellular biochemical constituents between normal and VBNC cells. Comparative analysis of the Raman spectra identified 12 main differential peaks between normal and VBNC cells, corresponding to carbohydrates, lipids, nucleic acids, and proteins. Our results suggested that there were obvious cellular structural intracellular macromolecular differences between normal and VBNC cells. During the induction of the VBNC state, the relative contents of carbohydrates (such as fructose), saturated fatty acids (such as palmitic acid), nucleic acid constituents, and some amino acids changed obviously, which could constitute a bacterial adaptive mechanism against adverse environmental conditions. Our study provides a theoretical basis for revealing the formation mechanism of a VBNC state in lactic acid bacteria.

3.
Front Microbiol ; 14: 1280350, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38188563

RESUMEN

Background: Some bacteria enter the viable but non-culturable (VBNC) state to survive harsh environmental conditions and external stresses. This alters cell physiology and has implications for the food industry as some bacteria, such as lactobacilli, undergo similar changes during food processing. Methods: This study aimed to investigate the transcriptomic changes of a probiotic strain, Lacticaseibacillus paracasei Zhang (L. paracasei Zhang), upon transition to the VBNC state using high throughput RNA sequencing (RNA-seq). Results: Bacteria were inoculated into the de Man, Rogosa, and Sharpe medium and maintained at low temperature and pH to induce cell transition to the VBNC state. Cells were harvested for analysis at five stages of VBNC induction: 0, 3, 30, and 180 days after induction and 210 days when the cells entered the VBNC state. Our results showed that the expression of 2,617, 2,642, 2,577, 2,829, and 2,840 genes was altered at these five different stages. The function of differentially expressed genes (DEGs, compared to healthy cells collected at day 0) and their encoded pathways were analyzed by the Gene Ontology Consortium and the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. A total of 10 DEGs were identified in cells that entered the VBNC state: five continuously upregulated (LCAZH_0621, LCAZH_1986, LCAZH_2038, LCAZH_2040, and LCAZH_2174) and five continuously downregulated (LCAZH_0024, LCAZH_0210, LCAZH_0339, LCAZH_0621, and LCAZH_0754). Conclusions: This study proposes a molecular model of the VBNC mechanism in L. paracasei Zhang, highlighting that changes in cell metabolism improve substrate utilization efficiency, thereby enhancing bacterial survival under adverse conditions. These data may be useful for improving the survival of probiotics in industrial food processing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA