Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Talanta ; 174: 652-659, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28738637

RESUMEN

We report the electrochemical detection of estriol using carbon black nanoballs (CNB) decorated with silver nanoparticles (AgNP) as electrode material. Homogeneous, porous films on glassy carbon electrodes (GCE) were obtained, with diameters of 20 - 25nm for CNB and 5 - 6nm for AgNP. CNB/AgNP electrodes had increased conductivity and electroactive area in comparison with bare GCE and GCE/CNB, according to cyclic voltammetry and electrochemical impedance spectroscopy. The oxidation potential peak was also down shifted by 93mV, compared to the bare GC electrode. Differential pulse voltammetry data were obtained in 0.1molL-1 PBS (pH 7.0) to detect estriol without the purification step, in the linear range between 0.2 and 3.0µmolL-1 with detection and quantification limits of 0.16 and 0.5µmolL-1 (0.04 and 0.16mgL-1), respectively. The sensor was used to detect estriol in a creek water sample with the same performance as in the official methodology based on high performance liquid chromatography.


Asunto(s)
Técnicas de Química Analítica/instrumentación , Estriol/análisis , Hormonas/análisis , Límite de Detección , Plata/química , Hollín/química , Agua/química , Electroquímica , Disruptores Endocrinos/análisis , Oxidación-Reducción , Contaminantes Químicos del Agua/análisis
2.
Anal Chim Acta ; 926: 88-98, 2016 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-27216397

RESUMEN

We report on the synthesis, characterization and applications of a Printex L6 carbon-silver hybrid nanomaterial (PC-Ag), which was obtained using a polyol method. In addition, we also highlight the use of Printex L6 nano-carbon as a much cheaper alternative to the use of carbon nanotubes and graphene. The silver nanoparticles (AgNP) were prepared directly on the surface of the Printex 6L carbon "nanocarbon" material using ethylene glycol as the reducing agent. The hybrid nanomaterial was characterized by High-angle annular dark-field transmission electron microscopy (HAADF-TEM), energy-dispersive X-ray spectroscopy (EDX), selected area electron diffraction (SAED), Raman spectroscopy and cyclic voltammetry. Optimized electrocatalytic activity on glassy carbon electrode was reached for the architecture GC/PC-Ag, the silver nanoparticles with size ranging between 1 and 2 nm were well-distributed throughout the hybrid material. The synergy between PC nano-carbons and AgNPs was verified by detection of gallic acid (GA) at a low applied potential (0.091 V vs. Ag/AgCl). GA detection was performed in a concentration range between 5.0 × 10(-7) and 8.5 × 10(-6) mol L(-1), with a detection limit of 6.63 × 10(-8) mol L(-1) (66.3 nmol L(-1)), which is considerably lower than similar devices. The approach for fabricating the reproducible GC/PC-Ag electrodes is entirely generic and may be explored for other types of (bio)sensors and devices.


Asunto(s)
Antioxidantes/farmacología , Carbono/química , Nanopartículas/química , Plata/química , Cromatografía de Gases , Microscopía Electrónica de Transmisión , Análisis Espectral/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA