Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38529497

RESUMEN

Dopamine (DA) D2-like receptors in both the central nervous system (CNS) and the periphery are key modulators of metabolism. Moreover, disruption of D2-like receptor signaling is implicated in dysglycemia. Yet, the respective metabolic contributions of CNS versus peripheral D2-like receptors including D2 (D2R) and D3 (D3R) receptors remain poorly understood. To address this, we developed new pharmacological tools, D2-like receptor agonists with diminished and delayed blood-brain barrier capability, to selectively manipulate D2R/D3R signaling in the periphery. We designated bromocriptine methiodide (BrMeI), a quaternary methiodide analogue of D2/3R agonist and diabetes drug bromocriptine, as our lead compound based on preservation of D2R/D3R binding and functional efficacy. We then used BrMeI and unmodified bromocriptine to dissect relative contributions of CNS versus peripheral D2R/D3R signaling in treating dysglycemia. Systemic administration of bromocriptine, with unrestricted access to CNS and peripheral targets, significantly improved both insulin sensitivity and glucose tolerance in obese, dysglycemic mice in vivo. In contrast, metabolic improvements were attenuated when access to bromocriptine was restricted either to the CNS through intracerebroventricular administration or delayed access to the CNS via BrMeI. Our findings demonstrate that the coordinated actions of both CNS and peripheral D2-like receptors are required for correcting dysglycemia. Ultimately, the development of a first-generation of drugs designed to selectively target the periphery provides a blueprint for dissecting mechanisms of central versus peripheral DA signaling and paves the way for novel strategies to treat dysglycemia.

2.
J Med Chem ; 66(17): 12141-12162, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37646374

RESUMEN

Pharmacological targeting of the dopamine D4 receptor (D4R)─expressed in brain regions that control cognition, attention, and decision-making─could be useful for several neuropsychiatric disorders including substance use disorders (SUDs). This study focused on the synthesis and evaluation of a novel series of benzothiazole analogues designed to target D4R. We identified several compounds with high D4R binding affinity (Ki ≤ 6.9 nM) and >91-fold selectivity over other D2-like receptors (D2R, D3R) with diverse partial agonist and antagonist profiles. Novel analogue 16f is a potent low-efficacy D4R partial agonist, metabolically stable in rat and human liver microsomes, and has excellent brain penetration in rats (AUCbrain/plasma > 3). 16f (5-30 mg/kg, i.p.) dose-dependently decreased iv cocaine self-administration in rats, consistent with previous results produced by D4R-selective antagonists. Off-target antagonism of 5-HT2A or 5-HT2B may also contribute to these effects. Results with 16f support further efforts to target D4R in SUD treatment.


Asunto(s)
Cocaína , Trastornos Relacionados con Sustancias , Humanos , Animales , Ratas , Serotonina , Benzotiazoles/farmacología , Benzotiazoles/uso terapéutico , Encéfalo , Cocaína/farmacología
3.
Front Endocrinol (Lausanne) ; 13: 1014678, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36267569

RESUMEN

The functional and pharmacological significance of the dopamine D4 receptor (D4R) has remained the least well understood of all the dopamine receptor subtypes. Even more enigmatic has been the role of the very prevalent human DRD4 gene polymorphisms in the region that encodes the third intracellular loop of the receptor. The most common polymorphisms encode a D4R with 4 or 7 repeats of a proline-rich sequence of 16 amino acids (D4.4R and D4.7R). DRD4 polymorphisms have been associated with individual differences linked to impulse control-related neuropsychiatric disorders, with the most consistent associations established between the gene encoding D4.7R and attention-deficit hyperactivity disorder (ADHD) and substance use disorders. The function of D4R and its polymorphic variants is being revealed by addressing the role of receptor heteromerization and the relatively avidity of norepinephrine for D4R. We review the evidence conveying a significant and differential role of D4.4R and D4.7R in the dopaminergic and noradrenergic modulation of the frontal cortico-striatal pyramidal neuron, with implications for the moderation of constructs of impulsivity as personality traits. This differential role depends on their ability to confer different properties to adrenergic α2A receptor (α2AR)-D4R heteromers and dopamine D2 receptor (D2R)-D4R heteromers, preferentially localized in the perisomatic region of the frontal cortical pyramidal neuron and its striatal terminals, respectively. We also review the evidence to support the D4R as a therapeutic target for ADHD and other impulse-control disorders, as well as for restless legs syndrome.


Asunto(s)
Dopamina , Receptores de Dopamina D4 , Humanos , Receptores de Dopamina D4/genética , Receptores de Dopamina D4/metabolismo , Norepinefrina , Adrenérgicos , Aminoácidos , Prolina
5.
J Med Chem ; 64(20): 15313-15333, 2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34636551

RESUMEN

The crystal structure of the dopamine D3 receptor (D3R) in complex with eticlopride inspired the design of bitopic ligands that explored (1) N-alkylation of the eticlopride's pyrrolidine ring, (2) shifting of the position of the pyrrolidine nitrogen, (3) expansion of the pyrrolidine ring system, and (4) incorporation of O-alkylations at the 4-position. Structure activity relationships (SAR) revealed that moving the N- or expanding the pyrrolidine ring was detrimental to D2R/D3R binding affinities. Small pyrrolidine N-alkyl groups were poorly tolerated, but the addition of a linker and secondary pharmacophore (SP) improved affinities. Moreover, O-alkylated analogues showed higher binding affinities compared to analogously N-alkylated compounds, e.g., O-alkylated 33 (D3R, 0.436 nM and D2R, 1.77 nM) vs the N-alkylated 11 (D3R, 6.97 nM and D2R, 25.3 nM). All lead molecules were functional D2R/D3R antagonists. Molecular models confirmed that 4-position modifications would be well-tolerated for future D2R/D3R bioconjugate tools that require long linkers and or sterically bulky groups.


Asunto(s)
Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/metabolismo , Salicilamidas/farmacología , Relación Dosis-Respuesta a Droga , Humanos , Ligandos , Modelos Moleculares , Estructura Molecular , Salicilamidas/síntesis química , Salicilamidas/química , Relación Estructura-Actividad
6.
Sci Signal ; 13(617)2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-32019899

RESUMEN

Signaling bias is the propensity for some agonists to preferentially stimulate G protein-coupled receptor (GPCR) signaling through one intracellular pathway versus another. We previously identified a G protein-biased agonist of the D2 dopamine receptor (D2R) that results in impaired ß-arrestin recruitment. This signaling bias was predicted to arise from unique interactions of the ligand with a hydrophobic pocket at the interface of the second extracellular loop and fifth transmembrane segment of the D2R. Here, we showed that residue Phe189 within this pocket (position 5.38 using Ballesteros-Weinstein numbering) functions as a microswitch for regulating receptor interactions with ß-arrestin. This residue is relatively conserved among class A GPCRs, and analogous mutations within other GPCRs similarly impaired ß-arrestin recruitment while maintaining G protein signaling. To investigate the mechanism of this signaling bias, we used an active-state structure of the ß2-adrenergic receptor (ß2R) to build ß2R-WT and ß2R-Y1995.38A models in complex with the full ß2R agonist BI-167107 for molecular dynamics simulations. These analyses identified conformational rearrangements in ß2R-Y1995.38A that propagated from the extracellular ligand binding site to the intracellular surface, resulting in a modified orientation of the second intracellular loop in ß2R-Y1995.38A, which is predicted to affect its interactions with ß-arrestin. Our findings provide a structural basis for how ligand binding site alterations can allosterically affect GPCR-transducer interactions and result in biased signaling.


Asunto(s)
Simulación de Dinámica Molecular , Receptores Adrenérgicos beta 2/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , beta-Arrestinas/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión/genética , Células CHO , Cricetinae , Cricetulus , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Células HEK293 , Humanos , Ligandos , Modelos Moleculares , Mutación , Unión Proteica , Dominios Proteicos , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/genética , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , beta-Arrestinas/química , beta-Arrestinas/genética
7.
J Med Chem ; 62(7): 3722-3740, 2019 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-30883109

RESUMEN

The dopamine D4 receptor (D4R) plays important roles in cognition, attention, and decision making. Novel D4R-selective ligands have promise in medication development for neuropsychiatric conditions, including Alzheimer's disease and substance use disorders. To identify new D4R-selective ligands, and to understand the molecular determinants of agonist efficacy at D4R, we report a series of eighteen novel ligands based on the classical D4R agonist A-412997 (1, 2-(4-(pyridin-2-yl)piperidin-1-yl)- N-( m-tolyl)acetamide). Compounds were profiled using radioligand binding displacement assays, ß-arrestin recruitment assays, cyclic AMP inhibition assays, and molecular dynamics computational modeling. We identified several novel D4R-selective ( Ki ≤ 4.3 nM and >100-fold vs other D2-like receptors) compounds with diverse partial agonist and antagonist profiles, falling into three structural groups. These compounds highlight receptor-ligand interactions that control efficacy at D2-like receptors and may provide insights into targeted drug discovery, leading to a better understanding of the role of D4Rs in neuropsychiatric disorders.


Asunto(s)
Agonistas de Dopamina/química , Agonistas de Dopamina/farmacología , Receptores de Dopamina D4/efectos de los fármacos , Animales , Células CHO , Cricetulus , Humanos , Ligandos , Relación Estructura-Actividad
8.
J Med Chem ; 60(2): 580-593, 2017 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-27983845

RESUMEN

Both dopamine D3 receptor (D3R) partial agonists and antagonists have been implicated as potential medications for substance use disorders. In contrast to antagonists, partial agonists may cause fewer side effects since they maintain some dopaminergic tone and may be less disruptive to normal neuronal functions. Here, we report three sets of 4-phenylpiperazine stereoisomers that differ considerably in efficacy: the (R)-enantiomers are antagonists/weak partial agonists, whereas the (S)-enantiomers are much more efficacious. To investigate the structural basis of partial agonism, we performed comparative microsecond-scale molecular dynamics simulations starting from the inactive state of D3R in complex with these enantiomers. Analysis of the simulation results reveals common structural rearrangements near the ligand binding site induced by the bound (S)-enantiomers, but not by the (R)-enantiomers, that are features of partially activated receptor conformations. These receptor models bound with partial agonists may be useful for structure-based design of compounds with tailored efficacy profiles.


Asunto(s)
Piperazinas/farmacología , Receptores de Dopamina D3/agonistas , Receptores de Dopamina D3/química , Sitios de Unión , Agonismo Parcial de Drogas , Células HEK293 , Humanos , Simulación de Dinámica Molecular , Piperazinas/síntesis química , Piperazinas/química , Estructura Terciaria de Proteína , Estereoisomerismo
9.
J Med Chem ; 58(15): 6195-213, 2015 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-26203768

RESUMEN

The dopamine D3 receptor (D3R) is a promising target for the development of pharmacotherapeutics to treat substance use disorders. Several D3R-selective antagonists are effective in animal models of drug abuse, especially in models of relapse. Nevertheless, poor bioavailability, metabolic instability, and/or predicted toxicity have impeded success in translating these drug candidates to clinical use. Herein, we report a series of D3R-selective 4-phenylpiperazines with improved metabolic stability. A subset of these compounds was evaluated for D3R functional efficacy and off-target binding at selected 5-HT receptor subtypes, where significant overlap in SAR with D3R has been observed. Several high affinity D3R antagonists, including compounds 16 (Ki = 0.12 nM) and 32 (Ki = 0.35 nM), showed improved metabolic stability compared to the parent compound, PG648 (6). Notably, 16 and the classic D3R antagonist SB277011A (2) were effective in reducing self-administration of heroin in wild-type but not D3R knockout mice.


Asunto(s)
Antagonistas de Dopamina/farmacología , Heroína/administración & dosificación , Receptores de Dopamina D3/antagonistas & inhibidores , Autoadministración , Animales , Antagonistas de Dopamina/química , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ensayo de Unión Radioligante , Receptores de Dopamina D3/genética
10.
Bioorg Med Chem ; 21(22): 7194-201, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24080102

RESUMEN

The 3-dimensional quantitative structure-activity relationship (3D-QSAR) molecular modeling technique or comparative molecular field analysis (CoMFA) has been used to design analogs of the natural product cryptolepine (1). Twenty-three compounds with their in vitro biological activities (IC50 values) against Crytococcus neoformans were used to generate the training set database of compounds for the CoMFA studies. The cross-validated q(2), noncross-validated r(2), and partial least squares (PLS) analysis results were used to predict the biological activity of 11 newly designed test set compounds. The best CoMFA model produced a q(2) of 0.815 and an r(2) of 0.976 indicating high statistical significance as a predictive model. The steric and electrostatic contributions from the contour map were interpreted from the color-coded contour plots generated from the PLS model and the active structural components for potency against C. neoformans were determined and validated in the test set compounds. The 3-substituted benzylthio quinolinium salts (4) that make up the test set were synthesized and evaluated based on the predicted activity from the CoMFA model and the results produced a good correlation between the predicted and experimental activity (R=0.82). Thus, CoMFA has served as an effective tool to aid the design of new analogs and in this case, it has aided the identification of compounds equipotent with amphotericin B, the gold standard in antifungal drug design.


Asunto(s)
Antifúngicos/química , Antifúngicos/farmacología , Cryptococcus/efectos de los fármacos , Relación Estructura-Actividad Cuantitativa , Compuestos de Quinolinio/química , Compuestos de Quinolinio/farmacología , Compuestos de Sulfhidrilo/química , Animales , Basidiomycota/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Alcaloides Indólicos/química , Análisis de los Mínimos Cuadrados , Quinolinas/química , Compuestos de Quinolinio/síntesis química , Reproducibilidad de los Resultados , Células Vero
11.
Eur J Med Chem ; 46(5): 1789-97, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21402432

RESUMEN

Ring-opened benzothieno[3,2-b]quinolinium salts (3) were designed and synthesized with substitution on the thiophene moiety. In vitro screenings were carried out against fungal pathogens including Cryptococcus neoformans, Candida albicans, Candida glabrata, Candida krusei and Aspergillus fumigatus. In all, by replacing the N-methyl group (2) with N-ω-phenylpentyl or ω-cyclohexylpentyl group to form substituted 3-(phenylthio)quinolinium compounds produced remarkable potencies, as high as 300-fold (cf, cryptolepine (1)=250 µg/mL vs 11p=0.8 µg/mL for C. albicans) over the starting tetracyclic parent. In addition, all the N-ω-cyclohexylpentyl analogs produced superior activity against all the microorganisms tested than the N-ω-phenylpentyl substituted compounds. The potential of these compounds to induce toxicity in Vero cells was also investigated and the majority of them showed lower or no cytotoxicity at 10 µg/mL than amphotericin B, the gold standard in antifungal drug development. For instance, the trifluoromethyl substituted analogs (11n-p) have selectivity indices over 2-fold better than those of amphotericin B in C. neoformans. Overall, this ring-opened scafford of benzothienoquinolines, with substitution on the thiophenyl moiety, serves as a new lead for further development.


Asunto(s)
Antifúngicos/farmacología , Hongos/efectos de los fármacos , Quinolinas/farmacología , Animales , Antifúngicos/síntesis química , Antifúngicos/química , Chlorocebus aethiops , Hongos/patogenicidad , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Quinolinas/síntesis química , Quinolinas/química , Estereoisomerismo , Relación Estructura-Actividad , Células Vero/efectos de los fármacos
12.
Bioorg Med Chem ; 19(1): 458-70, 2011 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-21134759

RESUMEN

Substitution around 5-methyl benzothieno[3,2-b]quinolinium (2) ring system was explored in order to identify positions of substitution that could improve its antifungal profile. The 3-methoxy (10b) was active against C. albicans, C. neoformans, and A. fumigatus and the 4-chloro (10f) analog showed moderate increases in anti-cryptococcal and anti-aspergillus activities. The effectiveness of 10b and 10f were validated in murine models of candidiasis and cryptococcosis, respectively. The efficacy of 10f in reducing brain cryptococcal infection and its observation in the brain of mice injected with this quaternary compound confirm the capacity of these compounds to cross the blood-brain barrier of mice. Overall, several of the chloro and methoxy substituted compounds showed significant improvements in activity against A. fumigatus, the fungal pathogen prevalent in patients receiving organ transplant. Opening the benzothiophene ring of 2 to form 1-(5-cyclohexylpentyl)-3-(phenylthio)quinolinium compound (3) resulted in the identification of several novel compounds with over 50-fold increases in potency (cf. 2) while retaining low cytotoxicities. Thus, compound 3 constitutes a new scaffold for development of drugs against opportunistic infections.


Asunto(s)
Hongos/efectos de los fármacos , Quinolinas/síntesis química , Quinolinas/farmacología , Animales , Barrera Hematoencefálica , Candidiasis/tratamiento farmacológico , Cromatografía Líquida de Alta Presión , Modelos Animales de Enfermedad , Técnicas In Vitro , Espectroscopía de Resonancia Magnética , Dosis Máxima Tolerada , Ratones , Pruebas de Sensibilidad Microbiana , Quinolinas/farmacocinética , Quinolinas/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...