Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 15(24)2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38139878

RESUMEN

The conducted investigation encompassed the comprehensive integration of mechanical, environmental, chemical, and microstructural evaluations of a composite amalgamating sandy soil and a synthetic polymer at two distinct concentrations (2.5% and 5%) across multiple curing intervals (0, 1, 2, 4, 7, 15, 30, and 45 days). The studied soil originates from an environmentally significant protected area in Brazil. The implementation of mechanisms for soil improvement in the region must adhere to technical criteria without causing environmental harm. Direct shear testing was conducted, permeability was assessed, and microstructure analysis and XRD and XRF/EDX studies of both the soil and composites were conducted. It was observed that longer curing times yielded improved results in shear stress, friction angle, and cohesive intercept, with SP_5% exhibiting the highest values compared with the soil and SP_2.5%. Adding the polymeric solution to the soil contributed to cementation and cohesion gains in the substrate. Through microstructural characterization, the polymer's role as a cementing agent for the grains is evident, forming a film on the grains and binding them together. Based on the analyses and studies conducted in the research, it can be concluded that there is technical feasibility for applying the polymeric solution at both dosages in geotechnical projects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...