Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 2110, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36747064

RESUMEN

In goat breeds, the domestication followed by artificial selection for economically important traits have shaped genetic variation within populations, leading to the fixation of specific alleles for specific traits. This led to the formation and evolution of many different breeds specialised and raised for a particular purpose. However, and despite the intensity of artificial selection, natural selection continues acting, possibly leaving a more diluted contribution over time, whose traces may be more difficult to capture. In order to explore selection footprints as response of environmental adaptation, we analysed a total of 993 goats from four transboundary goats breeds (Angora, Boer, Nubian and Saanen) genotyped with the SNP chip 50 K using outlier detection, runs of homozygosity and haplotype-based detection methods. Our results showed that all methods identified footprints on chromosome 6 (from 30 to 49 Mb) for two specific populations of Nubian goats sampled in Egypt. In Angora and Saanen breeds, we detected two selective sweeps using HapFLK, on chromosome 21 (from 52 to 55 Mb) and chromosome 25 (from 1 to 5 Mb) respectively. The analysis of runs of homozygosity showed some hotspots in all breeds. The overall investigation of the selected regions detected combining the different approaches and the gene ontology exploration revealed both novel and well-known loci related to adaptation, especially for heat stress. Our findings can help to better understand the balance between the two selective pressures in commercial goat breeds providing new insights on the molecular mechanisms of adaptation.


Asunto(s)
Variación Genética , Cabras , Animales , Cabras/genética , Selección Genética , Genotipo , Homocigoto , Polimorfismo de Nucleótido Simple
2.
Biology (Basel) ; 11(7)2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-36101405

RESUMEN

Probiotic bacteria are microorganisms with beneficial effects on human health and are currently used in numerous food supplements. However, no selection process is able to effectively distinguish probiotics from non-probiotic organisms on the basis of their genomic characteristics. In the current study, four Machine Learning algorithms were employed to accurately identify probiotic bacteria based on their DNA characteristics. Although the prediction accuracies of all algorithms were excellent, the Neural Network returned the highest scores in all the evaluation metrics, managing to discriminate probiotics from non-probiotics with an accuracy greater than 90%. Interestingly, our analysis also highlighted the information content of the tRNA sequences as the most important feature in distinguishing the two groups of organisms probably because tRNAs have regulatory functions and might have allowed probiotics to evolve faster in the human gut environment. Through the methodology presented here, it was also possible to identify seven promising new probiotics that have a higher information content in their tRNA sequences compared to non-probiotics. In conclusion, we prove for the first time that Machine Learning methods can discriminate human probiotic from non-probiotic organisms underlining information within tRNA sequences as the most important genomic feature in distinguishing them.

3.
Sci Rep ; 11(1): 13642, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34211046

RESUMEN

Bovine mastitis is one of the most important economic and health issues in dairy farms. Data collection during routine recording procedures and access to large datasets have shed the light on the possibility to use trained machine learning algorithms to predict the udder health status of cows. In this study, we compared eight different machine learning methods (Linear Discriminant Analysis, Generalized Linear Model with logit link function, Naïve Bayes, Classification and Regression Trees, k-Nearest Neighbors, Support Vector Machines, Random Forest and Neural Network) to predict udder health status of cows based on somatic cell counts. Prediction accuracies of all methods were above 75%. According to different metrics, Neural Network, Random Forest and linear methods had the best performance in predicting udder health classes at a given test-day (healthy or mastitic according to somatic cell count below or above a predefined threshold of 200,000 cells/mL) based on the cow's milk traits recorded at previous test-day. Our findings suggest machine learning algorithms as a promising tool to improve decision making for farmers. Machine learning analysis would improve the surveillance methods and help farmers to identify in advance those cows that would possibly have high somatic cell count in the subsequent test-day.


Asunto(s)
Bovinos , Industria Lechera , Aprendizaje Automático , Mastitis Bovina/diagnóstico , Animales , Bovinos/fisiología , Recuento de Células , Diagnóstico por Computador/veterinaria , Femenino , Pronóstico
4.
Animals (Basel) ; 11(4)2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33915759

RESUMEN

Extensive summer grazing is a dairy herd management practice frequently adopted in mountainous areas. Nowadays, this activity is threatened by its high labour demand, but it is fundamental for environmental, touristic and economic implications, as well as for the preservation of social and cultural traditions. Scarce information on the effects of such low-input farming systems on cattle health is available. Therefore, the present case study aimed at investigating how grazing may affect the health status of dairy cows by using milk traits routinely available from the national milk recording scheme. The research involved a dairy herd of 52 Simmental and 19 Holstein × Simmental crossbred cows. The herd had access to the pasture according to a rotational grazing scheme from late spring up to the end of summer. A total of 616 test day records collected immediately before and during the grazing season were used. Individual milk yield was registered during the milking procedure. Milk samples were analysed for composition (fat, protein, casein and lactose contents) and health-related milk indicators (electrical conductivity, urea and ß-hydroxybutyrate) using mid-infrared spectroscopy. Somatic cell count (SCC) and differential SCC were also determined. Data were analysed with a linear mixed model, which included the fixed effects of the period of sampling, cow breed, stage of lactation and parity, and the random effects of cow nested within breed and the residual. The transition from barn farming to pasture had a negative effect on milk yield, together with a small deterioration of fat and protein percentages. Health-related milk indicators showed a minor deterioration of the fat to protein ratio, differential SCC and electrical conductivity, particularly towards the end of the grazing season, whereas the somatic cell score and ß-hydroxybutyrate were relatively constant. Overall, the study showed that, when properly managed, pasture grazing does not have detrimental effects on dairy cows in terms of udder health and efficiency. Therefore, the proper management of cows on pasture can be a valuable solution to preserve the economic, social and environmental sustainability of small dairy farms in the alpine regions, without impairing cows' health.

5.
Animals (Basel) ; 10(12)2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33339148

RESUMEN

The growing interest of consumers for milk and dairy products of high nutritional value has pushed researchers to evaluate the feasibility of including fatty acids (FA) in selection programs to modify milk fat profile and improve its nutritional quality. Therefore, the aim of this study was to estimate genetic parameters of FA profile predicted by mid-infrared spectroscopy, milk yield, composition, and total and differential somatic cell count. Edited data included 35,331 test-day records of 25,407 Italian Holstein cows from 652 herds. Variance components and heritability were estimated using single-trait repeatability animal models, whereas bivariate repeatability animal models were used to estimate genetic and phenotypic correlations between traits, including the fixed effects of stage of lactation, parity, and herd-test-date, and the random effects of additive genetic animal, cow permanent environment and the residual. Heritabilities and genetic correlations obtained in the present study reflected both the origins of FA (extracted from the blood or synthesized de novo by the mammary gland) and their grouping according to saturation or chain length. In addition, correlations among FA groups were in line with correlation among individual FA. Moderate negative genetic correlations between FA and milk yield and moderate to strong positive correlations with fat, protein, and casein percentages suggest that actual selection programs are currently affecting all FA groups, not only the desired ones (e.g., polyunsaturated FA). The absence of association with differential somatic cell count and the weak association with somatic cell score indicate that selection on FA profile would not affect selection on resistance to mastitis and vice versa. In conclusion, our findings suggest that genetic selection on FA content is feasible, as FA are variable and moderately heritable. Nevertheless, in the light of correlations with other milk traits estimated in this study, a clear breeding goal should first be established.

6.
Anim Sci J ; 90(7): 808-817, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31083796

RESUMEN

The aim of this study was to estimate genetic associations between alternative somatic cell count (SCC) traits and milk yield, composition and udder type traits in Italian Jersey cows. Alternative SCC traits were test-day (TD) somatic cell score (SCS) averaged over early lactation (SCS_150), standard deviation of SCS of the entire lactation (SCS_SD), a binary trait indicating absence or presence of at least one TD SCC >400,000 cells/ml in the lactation (Infection) and the ratio of the number of TD SCC >400,000 cells/ml to total number of TD in the lactation (Severity). Heritabilities of SCC traits, including lactation-mean SCS (SCS_LM), ranged from 0.038 to 0.136. Genetic correlations between SCC traits were moderate to strong, with very few exceptions. Unfavourable genetic associations between milk yield and SCS_SD and Infection indicated that high-producing cows were more susceptible to variation in SCC than low-producing animals. Cows with deep udders, loose attachments, weak ligaments and long teats were more susceptible to an increase of SCC in milk. Overall, results suggest that alternative SCC traits can be exploited to improve cow's resistance to mastitis in Italian Jersey breed.


Asunto(s)
Composición Corporal/genética , Constitución Corporal/genética , Bovinos/genética , Bovinos/fisiología , Recuento de Células , Estudios de Asociación Genética , Lactancia/genética , Glándulas Mamarias Animales/patología , Leche/citología , Carácter Cuantitativo Heredable , Animales , Bovinos/anatomía & histología , Femenino , Mastitis
7.
J Dairy Sci ; 101(12): 11108-11119, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30316608

RESUMEN

The aim of this study was to investigate in Holstein cows the genetic basis of blood serum metabolites [i.e., total protein, albumin, globulin, albumin:globulin ratio (A:G), and blood ß-hydroxybutyrate (BHB)], a set of milk phenotypes related to udder health, milk quality technological characteristics, and genetic relationships among them. Samples of milk were collected from 498 Holstein cows belonging to 28 herds. All animal welfare and milk phenotypes were assessed using standard analytical methodology. A set of Bayesian univariate and bivariate animal models was implemented via Gibbs sampling, and statistical inference was based on the marginal posterior distributions of parameters of concern. We observed a small additive genetic influence for serum albumin concentrations, moderate heritability (≥0.20) for total proteins, globulins, and A:G, and high heritability (0.37) for blood BHB. Udder health traits (somatic cell score, milk lactose, and milk pH) showed low or moderate heritabilities (0.15-0.20), whereas variations in milk protein fraction concentrations were confirmed as mostly under genetic control (heritability: 0.21-0.71). The moderate and high heritabilities observed for milk coagulation properties and curd firming modeling parameters provided confirmation that genetic background exerts a strong influence on the cheese-making ability of milk, largely due to genetic polymorphisms in the major milk protein genes. Blood BHB showed strong negative genetic correlations with globulins (-0.619) but positive correlations with serum albumin (0.629) and A:G (0.717), which suggests that alterations in the serum protein pattern and BHB blood levels are likely to be genetically related. Strong relationships were found between albumin and fat percentages (-0.894), between globulin and αS2-CN (-0.610), and, to a lesser extent, between serum protein pattern and milk technological characteristics. Genetic relationships between blood BHB and traits related to udder health and milk quality and technological characteristics were mostly weak. This study provides evidence that there is exploitable additive genetic variation for traits related to animal health and welfare and throws light on the shared genetic basis of these traits and the phenotypes related to the quality and cheese-making ability of milk.


Asunto(s)
Ácido 3-Hidroxibutírico/sangre , Bovinos/genética , Queso/análisis , Variación Genética , Glándulas Mamarias Animales/metabolismo , Proteínas de la Leche/metabolismo , Animales , Bovinos/sangre , Femenino , Lactosa/análisis , Leche/química , Proteínas de la Leche/química , Proteínas de la Leche/genética , Fenotipo , Carácter Cuantitativo Heredable
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...