Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 265(Pt 2): 130747, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38479657

RESUMEN

Exopolysaccharides (EPSs), originating from various microbes, and mushrooms, excel in their conventional role in bioremediation to showcase diverse applications emphasizing nanobiotechnology including nano-drug carriers, nano-excipients, medication and/or cell encapsulation, gene delivery, tissue engineering, diagnostics, and associated treatments. Acknowledged for contributions to adsorption, nutrition, and biomedicine, EPSs are emerging as appealing alternatives to traditional polymers, for biodegradability and biocompatibility. This article shifts away from the conventional utility to delve deeply into the expansive landscape of EPS applications, particularly highlighting their integration into cutting-edge nanobiotechnological methods. Exploring EPS synthesis, extraction, composition, and properties, the discussion emphasizes their structural diversity with molecular weight and heteropolymer compositions. Their role as raw materials for value-added products takes center stage, with critical insights into recent applications in nanobiotechnology. The multifaceted potential, biological relevance, and commercial applicability of EPSs in contemporary research and industry align with the nanotechnological advancements coupled with biotechnological nano-cleansing agents are highlighted. EPS-based nanostructures for biological applications have a bright future ahead of them. Providing crucial information for present and future practices, this review sheds light on how eco-friendly EPSs derived from microbial biomass of terrestrial and aquatic environments can be used to better understand contemporary nanobiotechnology for the benefit of society.


Asunto(s)
Nanoestructuras , Polisacáridos Bacterianos , Polisacáridos Bacterianos/química , Biotecnología , Portadores de Fármacos , Nanotecnología
2.
Food Res Int ; 176: 113841, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38163732

RESUMEN

Astaxanthin is a red-colored secondary metabolite with excellent antioxidant properties, typically finds application as foods, feed, cosmetics, nutraceuticals, and medications. Astaxanthin is usually produced synthetically using chemicals and costs less as compared to the natural astaxanthin obtained from fish, shrimps, and microorganisms. Over the decades, astaxanthin has been naturally synthesized from Haematococcus pluvialis in commercial scales and remains exceptional, attributed to its higher bioactive properties as compared to synthetic astaxanthin. However, the production cost of algal astaxanthin is still high due to several bottlenecks prevailing in the upstream and downstream processes. To that end, the present study intends to review the recent trends and advancements in astaxanthin production from microalgae. The structure of astaxanthin, sources, production strategies of microalgal astaxanthin, and factors influencing the synthesis of microalgal astaxanthin were discussed while detailing the pathway involved in astaxanthin biosynthesis. The study also discusses the relevant downstream process used in commercial scales and details the applications of astaxanthin in various health related issues.


Asunto(s)
Chlorophyceae , Microalgas , Microalgas/metabolismo , Xantófilas/metabolismo
3.
Carbohydr Polym ; 328: 121686, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38220318

RESUMEN

Cyanobacteria are ideally suited for developing sustainable biological products but are underdeveloped due to a lack of genetic tools. Exopolysaccharide (EPS) is one of the essential bioproducts with widespread industrial applications. Despite their unique structural characteristics associated with distinct biological and physicochemical aspects, EPS from cyanobacteria has been underexplored. However, it is expected to accelerate in the near future due to the utilization of low-cost cyanobacterial platforms and readily available information on the structural data and specific features of these biopolymers. In recent years, cyanobacterial EPSs have attracted growing scientific attention due to their simple renewability, rheological characteristics, massive production, and potential uses in several biotechnology domains. This review focuses on the most recent research on potential new EPS producers and their distinct compositions responsible for novel biological activities. Additionally, nutritional and process parameters discovered recently for enhancing EPS production and engineering strategies applied currently to control the biosynthetic pathway for enhanced EPS production are critically highlighted. The process intensification of previously developed EPS extraction and purification processes from cyanobacterial biomass is also extensively explained. Furthermore, the newly reported biotechnological applications of cyanobacterial exopolysaccharides are also discussed.


Asunto(s)
Productos Biológicos , Cianobacterias , Cianobacterias/metabolismo , Biotecnología , Biopolímeros/química , Productos Biológicos/metabolismo , Polisacáridos Bacterianos
4.
Braz J Microbiol ; 54(3): 1723-1736, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37198419

RESUMEN

Klebsiella pneumoniae is one of the major nosocomial pathogens responsible for pneumoniae, septicaemia, liver abscesses, and urinary tract infections. Coordinated efforts by antibiotic stewardship and clinicians are underway to curtail the emergence of antibiotic-resistant strains. The objective of the present study is to characterize K. pneumoniae strains through antibiotic resistance screening for production of beta-lactamases (ß-lactamases) such as extended spectrum beta lactamases (ESBLs), AmpC ß-lactamases, and carbapenemases by phenotypic and genotypic methods and genetic fingerprinting by enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR) and repetitive element palindromic PCR (REP-PCR). A total of 85 K. pneumoniae strains isolated from 504 human urinary tract infections (UTI) were used in this study. Only 76 isolates showed positive in phenotypic screening test (PST), while combination disc method (CDM) as phenotypic confirmatory test (PCT) confirmed 72 isolates as ESBL producers. One or more ß-lactamase genes were detected by PCR in 66 isolates (91.66%, 66/72) with blaTEM gene being the most predominant (75.75%, 50/66). AmpC genes could be detected in 21 isolates (31.8%, 21/66) with FOX gene being the predominant (24.24%, 16/66), whereas NDM-I was detected in a single strain (1.51%, 1/66). Genetic fingerprinting using ERIC-PCR and REP-PCR revealed wide heterogeneity among ß-lactamase producing isolates with discriminatory power of 0.9995 and 1, respectively.


Asunto(s)
Infecciones por Klebsiella , Infecciones Urinarias , Humanos , Klebsiella pneumoniae/genética , Pruebas de Sensibilidad Microbiana , Proteínas Bacterianas/genética , beta-Lactamasas/genética , Antibacterianos/farmacología , Reacción en Cadena de la Polimerasa , Pruebas Genéticas , Variación Genética , Infecciones por Klebsiella/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...