Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Front Med (Lausanne) ; 8: 666554, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34485323

RESUMEN

Lyme disease (also known as Lyme borreliosis) is the most common vector-borne disease in the United States with an estimated 476,000 cases per year. While historically, the long-term impact of Lyme disease on patients has been controversial, mounting evidence supports the idea that a substantial number of patients experience persistent symptoms following treatment. The research community has largely lacked the necessary funding to properly advance the scientific and clinical understanding of the disease, or to develop and evaluate innovative approaches for prevention, diagnosis, and treatment. Given the many outstanding questions raised into the diagnosis, clinical presentation and treatment of Lyme disease, and the underlying molecular mechanisms that trigger persistent disease, there is an urgent need for more support. This review article summarizes progress over the past 5 years in our understanding of Lyme and tick-borne diseases in the United States and highlights remaining challenges.

2.
Front Immunol ; 12: 636289, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33763080

RESUMEN

Although widely prevalent, Lyme disease is still under-diagnosed and misunderstood. Here we followed 73 acute Lyme disease patients and uninfected controls over a period of a year. At each visit, RNA-sequencing was applied to profile patients' peripheral blood mononuclear cells in addition to extensive clinical phenotyping. Based on the projection of the RNA-seq data into lower dimensions, we observe that the cases are separated from controls, and almost all cases never return to cluster with the controls over time. Enrichment analysis of the differentially expressed genes between clusters identifies up-regulation of immune response genes. This observation is also supported by deconvolution analysis to identify the changes in cell type composition due to Lyme disease infection. Importantly, we developed several machine learning classifiers that attempt to perform various Lyme disease classifications. We show that Lyme patients can be distinguished from the controls as well as from COVID-19 patients, but classification was not successful in distinguishing those patients with early Lyme disease cases that would advance to develop post-treatment persistent symptoms.


Asunto(s)
Leucocitos Mononucleares/inmunología , Enfermedad de Lyme/genética , Adulto , COVID-19/genética , COVID-19/inmunología , Citocinas/genética , Citocinas/inmunología , Femenino , Estudios de Seguimiento , Humanos , Leucocitos Mononucleares/química , Enfermedad de Lyme/sangre , Enfermedad de Lyme/inmunología , Aprendizaje Automático , Masculino , Persona de Mediana Edad , Estudios Prospectivos , RNA-Seq
3.
Front Psychiatry ; 11: 530995, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33101072

RESUMEN

BACKGROUND: N-of-1 trials are single patient, multiple crossover, and comparative effectiveness experiments. Despite their rating as "level 1" evidence, they are not routinely used in clinical medicine to evaluate the effectiveness of treatments. OBJECTIVE: We explored the potential for implementing a mobile app-based n-of-1 trial platform for collaborative use by clinicians and patients to support data-driven decisions around the treatment of insomnia. METHODS: A survey assessing awareness and utilization of n-of-1 trials was administered to healthcare professionals that frequently treat patients with insomnia at the Icahn School of Medicine at Mount Sinai in New York City. RESULTS: A total of 45 healthcare professionals completed the survey and were included in the analysis. We found that 64% (29/45) of healthcare professionals surveyed had not heard of n-of-1 trials. After a brief description of these methods, 75% (30/40) of healthcare professionals reported that they are likely or highly likely to use an app-based n-of-1 trial at least once in the next year if the service were free and easy to offer to their patients. CONCLUSIONS: An app-based n-of-1 trials platform might be a valuable tool for clinicians and patients to identify the best treatments for insomnia. The lack of awareness of n-of-1 trials coupled with receptivity to their use suggests that educational interventions may address a current barrier to wider utilization of n-of-1 trials.

5.
JMIR Res Protoc ; 9(1): e16362, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31913135

RESUMEN

BACKGROUND: N-of-1 trials promise to help individuals make more informed decisions about treatment selection through structured experiments that compare treatment effectiveness by alternating treatments and measuring their impacts in a single individual. We created a digital platform that automates the design, administration, and analysis of N-of-1 trials. Our first N-of-1 trial, the app-based Brain Boost Study, invited individuals to compare the impacts of two commonly consumed substances (caffeine and L-theanine) on their cognitive performance. OBJECTIVE: The purpose of this study is to evaluate critical factors that may impact the completion of N-of-1 trials to inform the design of future app-based N-of-1 trials. We will measure study completion rates for participants that begin the Brain Boost Study and assess their associations with study duration (5, 15, or 27 days) and notification level (light or moderate). METHODS: Participants will be randomized into three study durations and two notification levels. To sufficiently power the study, a minimum of 640 individuals must begin the study, and 97 individuals must complete the study. We will use a multiple logistic regression model to discern whether the study length and notification level are associated with the rate of study completion. For each group, we will also compare participant adherence and the proportion of trials that yield statistically meaningful results. RESULTS: We completed the beta testing of the N1 app on a convenience sample of users. The Brain Boost Study on the N1 app opened enrollment to the public in October 2019. More than 30 participants enrolled in the first month. CONCLUSIONS: To our knowledge, this will be the first study to rigorously evaluate critical factors associated with study completion in the context of app-based N-of-1 trials. TRIAL REGISTRATION: ClinicalTrials.gov NCT04056650; https://clinicaltrials.gov/ct2/show/NCT04056650. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): PRR1-10.2196/16362.

6.
Eur J Hum Genet ; 28(4): 424-434, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31784701

RESUMEN

Public acceptance is critical for sharing of genomic data at scale. This paper examines how acceptance of data sharing pertains to the perceived similarities and differences between DNA and other forms of personal data. It explores the perceptions of representative publics from the USA, Canada, the UK and Australia (n = 8967) towards the donation of DNA and health data. Fifty-two percent of this public held 'exceptionalist' views about genetics (i.e., believed DNA is different or 'special' compared to other types of medical information). This group was more likely to be familiar with or have had personal experience with genomics and to perceive DNA information as having personal as well as clinical and scientific value. Those with personal experience with genetics and genetic exceptionalist views were nearly six times more likely to be willing to donate their anonymous DNA and medical information for research than other respondents. Perceived harms from re-identification did not appear to dissuade publics from being willing to participate in research. The interplay between exceptionalist views about genetics and the personal, scientific and clinical value attributed to data would be a valuable focus for future research.


Asunto(s)
Privacidad Genética/psicología , Conocimientos, Actitudes y Práctica en Salud , Difusión de la Información , Opinión Pública , Adulto , Australia , Canadá , Femenino , Pruebas Genéticas/ética , Genoma Humano , Humanos , Masculino , Persona de Mediana Edad , Reino Unido , Estados Unidos
7.
Gigascience ; 8(6)2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-31241153

RESUMEN

BACKGROUND: Many aspects of our lives are now digitized and connected to the internet. As a result, individuals are now creating and collecting more personal data than ever before. This offers an unprecedented chance for human-participant research ranging from the social sciences to precision medicine. With this potential wealth of data comes practical problems (e.g., how to merge data streams from various sources), as well as ethical problems (e.g., how best to balance risks and benefits when enabling personal data sharing by individuals). RESULTS: To begin to address these problems in real time, we present Open Humans, a community-based platform that enables personal data collections across data streams, giving individuals more personal data access and control of sharing authorizations, and enabling academic research as well as patient-led projects. We showcase data streams that Open Humans combines (e.g., personal genetic data, wearable activity monitors, GPS location records, and continuous glucose monitor data), along with use cases of how the data facilitate various projects. CONCLUSIONS: Open Humans highlights how a community-centric ecosystem can be used to aggregate personal data from various sources, as well as how these data can be used by academic and citizen scientists through practical, iterative approaches to sharing that strive to balance considerations with participant autonomy, inclusion, and privacy.


Asunto(s)
Bases de Datos como Asunto , Investigación Biomédica , Humanos , Medicina de Precisión , Privacidad
8.
Pac Symp Biocomput ; 24: 415-426, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30864342

RESUMEN

Anonymized electronic health records (EHR) are often used for biomedical research. One persistent concern with this type of research is the risk for re-identification of patients from their purportedly anonymized data. Here, we use the EHR of 731,850 de-identified patients to demonstrate that the average patient is unique from all others 98.4% of the time simply by examining what laboratory tests have been ordered for them. By the time a patient has visited the hospital on two separate days, they are unique in 72.3% of cases. We further present a computational study to identify how accurately the records from a single day of care can be used to re-identify patients from a set of 99 other patients. We show that, given a single visit's laboratory orders (even without result values) for a patient, we can re-identify the patient at least 25% of the time. Furthermore, we can place this patient among the top 10 most similar patients 47% of the time. Finally, we present a proof-of-concept technique using a variational autoencoder to encode laboratory results into a lower-dimensional latent space. We demonstrate that releasing latentspace encoded laboratory orders significantly improves privacy compared to releasing raw laboratory orders (<5% re-identification), while preserving information contained within the laboratory orders (AUC of >0.9 for recreating encoded values). Our findings have potential consequences for the public release of anonymized laboratory tests to the biomedical research community. We note that our findings do not imply that laboratory tests alone are personally identifiable. In the attack scenario presented here, reidentification would require a threat actor to possess an external source of laboratory values which are linked to personal identifiers at the start.


Asunto(s)
Técnicas de Laboratorio Clínico/estadística & datos numéricos , Confidencialidad , Anonimización de la Información , Información Personal , Algoritmos , Biología Computacional , Registros Electrónicos de Salud/estadística & datos numéricos , Humanos , Información Personal/estadística & datos numéricos
9.
Cureus ; 10(4): e2452, 2018 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-29888156

RESUMEN

Familial hypercholesterolemia (FH) is a genetic disease associated with persistently elevated levels of low-density lipoprotein cholesterol (LDL-C), which ultimately leads to greatly increased rates of atherosclerosis and cardiovascular disease. Atherosclerosis progression can be clinically approximated through measurement of coronary artery calcification (CAC). CAC can be measured via electron beam computed tomography (EBCT), multi-slice computed tomography (MSCT), or contrast-enhanced CT coronary angiography (CTCA). Here, we present the case of a 72-year-old man with known FH and established hypercholesterolemia who has consistently tested negative for any significant CAC.

10.
Per Med ; 15(4): 311-318, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29856292

RESUMEN

Our international study, 'Your DNA, Your Say', uses film and an online cross-sectional survey to gather public attitudes toward the donation, access and sharing of DNA information. We describe the methodological approach used to create an engaging and bespoke survey, suitable for translation into many different languages. We address some of the particular challenges in designing a survey on the subject of genomics. In order to understand the significance of a genomic result, researchers and clinicians alike use external databases containing DNA and medical information from thousands of people. We ask how publics would like their 'anonymous' data to be used (or not to be used) and whether they are concerned by the potential risks of reidentification; the results will be used to inform policy.


Asunto(s)
Actitud , Genómica , Opinión Pública , Encuestas y Cuestionarios , Estudios Transversales , Humanos , Difusión de la Información , Internet , Privacidad
11.
Hum Genomics ; 12(1): 7, 2018 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-29454384

RESUMEN

BACKGROUND: There is a growing support for the stance that patients and research participants should have better and easier access to their raw (uninterpreted) genomic sequence data in both clinical and research contexts. MAIN BODY: We review legal frameworks and literature on the benefits, risks, and practical barriers of providing individuals access to their data. We also survey genomic sequencing initiatives that provide or plan to provide individual access. Many patients and research participants expect to be able to access their health and genomic data. Individuals have a legal right to access their genomic data in some countries and contexts. Moreover, increasing numbers of participatory research projects, direct-to-consumer genetic testing companies, and now major national sequencing initiatives grant individuals access to their genomic sequence data upon request. CONCLUSION: Drawing on current practice and regulatory analysis, we outline legal, ethical, and practical guidance for genomic sequencing initiatives seeking to offer interested patients and participants access to their raw genomic data.


Asunto(s)
Secuencia de Bases/genética , Genoma Humano/genética , Genómica/legislación & jurisprudencia , Ética en Investigación , Pruebas Genéticas , Genómica/ética , Humanos , Pacientes/legislación & jurisprudencia , Investigación/legislación & jurisprudencia
12.
Hum Mutat ; 38(9): 1266-1276, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28544481

RESUMEN

The advent of next-generation sequencing has dramatically decreased the cost for whole-genome sequencing and increased the viability for its application in research and clinical care. The Personal Genome Project (PGP) provides unrestricted access to genomes of individuals and their associated phenotypes. This resource enabled the Critical Assessment of Genome Interpretation (CAGI) to create a community challenge to assess the bioinformatics community's ability to predict traits from whole genomes. In the CAGI PGP challenge, researchers were asked to predict whether an individual had a particular trait or profile based on their whole genome. Several approaches were used to assess submissions, including ROC AUC (area under receiver operating characteristic curve), probability rankings, the number of correct predictions, and statistical significance simulations. Overall, we found that prediction of individual traits is difficult, relying on a strong knowledge of trait frequency within the general population, whereas matching genomes to trait profiles relies heavily upon a small number of common traits including ancestry, blood type, and eye color. When a rare genetic disorder is present, profiles can be matched when one or more pathogenic variants are identified. Prediction accuracy has improved substantially over the last 6 years due to improved methodology and a better understanding of features.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Secuenciación Completa del Genoma/métodos , Área Bajo la Curva , Predisposición Genética a la Enfermedad , Proyecto Genoma Humano , Humanos , Fenotipo , Sitios de Carácter Cuantitativo
13.
Sci Data ; 3: 160025, 2016 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-27271295

RESUMEN

The Genome in a Bottle Consortium, hosted by the National Institute of Standards and Technology (NIST) is creating reference materials and data for human genome sequencing, as well as methods for genome comparison and benchmarking. Here, we describe a large, diverse set of sequencing data for seven human genomes; five are current or candidate NIST Reference Materials. The pilot genome, NA12878, has been released as NIST RM 8398. We also describe data from two Personal Genome Project trios, one of Ashkenazim Jewish ancestry and one of Chinese ancestry. The data come from 12 technologies: BioNano Genomics, Complete Genomics paired-end and LFR, Ion Proton exome, Oxford Nanopore, Pacific Biosciences, SOLiD, 10X Genomics GemCode WGS, and Illumina exome and WGS paired-end, mate-pair, and synthetic long reads. Cell lines, DNA, and data from these individuals are publicly available. Therefore, we expect these data to be useful for revealing novel information about the human genome and improving sequencing technologies, SNP, indel, and structural variant calling, and de novo assembly.


Asunto(s)
Benchmarking , Genoma Humano , Exoma , Genómica , Humanos , Mutación INDEL
14.
Nat Biotechnol ; 34(5): 531-8, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27065010

RESUMEN

Genetic studies of human disease have traditionally focused on the detection of disease-causing mutations in afflicted individuals. Here we describe a complementary approach that seeks to identify healthy individuals resilient to highly penetrant forms of genetic childhood disorders. A comprehensive screen of 874 genes in 589,306 genomes led to the identification of 13 adults harboring mutations for 8 severe Mendelian conditions, with no reported clinical manifestation of the indicated disease. Our findings demonstrate the promise of broadening genetic studies to systematically search for well individuals who are buffering the effects of rare, highly penetrant, deleterious mutations. They also indicate that incomplete penetrance for Mendelian diseases is likely more common than previously believed. The identification of resilient individuals may provide a first step toward uncovering protective genetic variants that could help elucidate the mechanisms of Mendelian diseases and new therapeutic strategies.


Asunto(s)
Mapeo Cromosómico/métodos , Resistencia a la Enfermedad/genética , Enfermedades Genéticas Congénitas/diagnóstico , Enfermedades Genéticas Congénitas/genética , Genoma Humano/genética , Análisis de la Aleatorización Mendeliana/métodos , Niño , Preescolar , Mapeo Cromosómico/estadística & datos numéricos , Análisis Mutacional de ADN/métodos , Femenino , Predisposición Genética a la Enfermedad/genética , Pruebas Genéticas/métodos , Humanos , Lactante , Recién Nacido , Masculino , Análisis de la Aleatorización Mendeliana/estadística & datos numéricos , Polimorfismo de Nucleótido Simple/genética , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
15.
Genome Med ; 6(2): 10, 2014 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-24713084

RESUMEN

BACKGROUND: Since its initiation in 2005, the Harvard Personal Genome Project has enrolled thousands of volunteers interested in publicly sharing their genome, health and trait data. Because these data are highly identifiable, we use an 'open consent' framework that purposefully excludes promises about privacy and requires participants to demonstrate comprehension prior to enrollment. DISCUSSION: Our model of non-anonymous, public genomes has led us to a highly participatory model of researcher-participant communication and interaction. The participants, who are highly committed volunteers, self-pursue and donate research-relevant datasets, and are actively engaged in conversations with both our staff and other Personal Genome Project participants. We have quantitatively assessed these communications and donations, and report our experiences with returning research-grade whole genome data to participants. We also observe some of the community growth and discussion that has occurred related to our project. SUMMARY: We find that public non-anonymous data is valuable and leads to a participatory research model, which we encourage others to consider. The implementation of this model is greatly facilitated by web-based tools and methods and participant education. Project results are long-term proactive participant involvement and the growth of a community that benefits both researchers and participants.

16.
Gigascience ; 3(1): 2, 2014 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-24606731

RESUMEN

The co-authors of this paper hereby state their intention to work together to launch the Genomic Observatories Network (GOs Network) for which this document will serve as its Founding Charter. We define a Genomic Observatory as an ecosystem and/or site subject to long-term scientific research, including (but not limited to) the sustained study of genomic biodiversity from single-celled microbes to multicellular organisms.An international group of 64 scientists first published the call for a global network of Genomic Observatories in January 2012. The vision for such a network was expanded in a subsequent paper and developed over a series of meetings in Bremen (Germany), Shenzhen (China), Moorea (French Polynesia), Oxford (UK), Pacific Grove (California, USA), Washington (DC, USA), and London (UK). While this community-building process continues, here we express our mutual intent to establish the GOs Network formally, and to describe our shared vision for its future. The views expressed here are ours alone as individual scientists, and do not necessarily represent those of the institutions with which we are affiliated.

17.
Proc Natl Acad Sci U S A ; 109(30): 11920-7, 2012 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-22797899

RESUMEN

Rapid advances in DNA sequencing promise to enable new diagnostics and individualized therapies. Achieving personalized medicine, however, will require extensive research on highly reidentifiable, integrated datasets of genomic and health information. To assist with this, participants in the Personal Genome Project choose to forgo privacy via our institutional review board- approved "open consent" process. The contribution of public data and samples facilitates both scientific discovery and standardization of methods. We present our findings after enrollment of more than 1,800 participants, including whole-genome sequencing of 10 pilot participant genomes (the PGP-10). We introduce the Genome-Environment-Trait Evidence (GET-Evidence) system. This tool automatically processes genomes and prioritizes both published and novel variants for interpretation. In the process of reviewing the presumed healthy PGP-10 genomes, we find numerous literature references implying serious disease. Although it is sometimes impossible to rule out a late-onset effect, stringent evidence requirements can address the high rate of incidental findings. To that end we develop a peer production system for recording and organizing variant evaluations according to standard evidence guidelines, creating a public forum for reaching consensus on interpretation of clinically relevant variants. Genome analysis becomes a two-step process: using a prioritized list to record variant evaluations, then automatically sorting reviewed variants using these annotations. Genome data, health and trait information, participant samples, and variant interpretations are all shared in the public domain-we invite others to review our results using our participant samples and contribute to our interpretations. We offer our public resource and methods to further personalized medical research.


Asunto(s)
Bases de Datos Genéticas , Variación Genética , Genoma Humano/genética , Fenotipo , Medicina de Precisión/métodos , Programas Informáticos , Línea Celular , Recolección de Datos , Humanos , Medicina de Precisión/tendencias , Análisis de Secuencia de ADN
18.
Dialogues Clin Neurosci ; 12(1): 47-60, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20373666

RESUMEN

The cost of a diploid human genome sequence has dropped from about $70M to $2000 since 2007--even as the standards for redundancy have increased from 7x to 40x in order to improve call rates. Coupled with the low return on investment for common single-nucleotide polylmorphisms, this has caused a significant rise in interest in correlating genome sequences with comprehensive environmental and trait data (GET). The cost of electronic health records, imaging, and microbial, immunological, and behavioral data are also dropping quickly. Sharing such integrated GET datasets and their interpretations with a diversity of researchers and research subjects highlights the need for informed-consent models capable of addressing novel privacy and other issues, as well as for flexible data-sharing resources that make materials and data available with minimum restrictions on use. This article examines the Personal Genome Project's effort to develop a GET database as a public genomics resource broadly accessible to both researchers and research participants, while pursuing the highest standards in research ethics.


Asunto(s)
Privacidad Genética , Genoma Humano/fisiología , Proyecto Genoma Humano , Biología Computacional/métodos , Bases de Datos Genéticas/economía , Bases de Datos Genéticas/estadística & datos numéricos , Registros Electrónicos de Salud/economía , Registros Electrónicos de Salud/estadística & datos numéricos , Ambiente , Proyecto Genoma Humano/economía , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...