Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Int J Mol Sci ; 25(4)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38396945

RESUMEN

High-dose irradiation can trigger numerous endothelial dysfunctions, including apoptosis, the overexpression of adhesion molecules, and alteration of adherens junctions. Altogether, these endothelial dysfunctions contribute to the development of tissue inflammation and organ damage. The development of endothelial dysfunctions may depend on protein phosphorylation by various protein kinases, but the possible role of protein kinase A (PKA) has not been investigated so far, and efficient compounds able to protect the endothelium from irradiation effects are needed. Here we report the beneficial effects of the PKA inhibitor KT5720 on a panel of irradiation-induced endothelial dysfunctions in human pulmonary microvascular endothelial cells (HPMECs). High-dose X-irradiation (15 Gy) triggered the late apoptosis of HPMECs independent of the ceramide/P38 MAP kinase pathway or p53. In contrast, the treatment of HPMECs with KT5720 completely prevented irradiation-induced apoptosis, whether applied before or after cell irradiation. Immunostainings of irradiated monolayers revealed that KT5720 treatment preserved the overall integrity of endothelial monolayers and adherens junctions linking endothelial cells. Real-time impedance measurements performed in HPMEC monolayers confirmed the overall protective role of KT5720 against irradiation. Treatment with KT5720 before or after irradiation also reduced irradiation-induced ICAM-1 overexpression. Finally, the possible role for PKA in the development of endothelial dysfunctions is discussed, but the potency of KT5720 to inhibit the development of a panel of irradiation-induced endothelial dysfunctions, whether applied before or after irradiation, suggests that this compound could be of great interest for both the prevention and treatment of vascular damages in the event of exposure to a high dose of radiation.


Asunto(s)
Carbazoles , Proteínas Quinasas Dependientes de AMP Cíclico , Células Endoteliales , Péptidos y Proteínas de Señalización Intracelular , Pirroles , Humanos , Células Endoteliales/metabolismo , Células Cultivadas , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo
2.
Cell Calcium ; 117: 102839, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38134531

RESUMEN

Ca2+ signaling is essential for cardiac contractility and excitability in heart function and remodeling. Intriguingly, little is known about the role of a new family of ion channels, the endo-lysosomal non-selective cation "two-pore channel" (TPCs) in heart function. Here we have used double TPC knock-out mice for the 1 and 2 isoforms of TPCs (Tpcn1/2-/-) and evaluated their cardiac function. Doppler-echocardiography unveils altered left ventricular (LV) systolic function associated with a LV relaxation impairment. In cardiomyocytes isolated from Tpcn1/2-/- mice, we observed a reduction in the contractile function with a decrease in the sarcoplasmic reticulum Ca2+ content and a reduced expression of various key proteins regulating Ca2+ stores, such as calsequestrin. We also found that two main regulators of the energy metabolism, AMP-activated protein kinase and mTOR, were down regulated. We found an increase in the expression of TPC1 and TPC2 in a model of transverse aortic constriction (TAC) mice and in chronically isoproterenol infused WT mice. In this last model, adaptive cardiac hypertrophy was reduced by Tpcn1/2 deletion. Here, we propose a central role for TPCs and lysosomes that could act as a hub integrating information from the excitation-contraction coupling mechanisms, cellular energy metabolism and hypertrophy signaling.


Asunto(s)
Canales de Calcio , Canales de Dos Poros , Ratones , Animales , Canales de Calcio/metabolismo , Lisosomas/metabolismo , Transducción de Señal , Ratones Noqueados , Cardiomegalia/metabolismo , NADP/metabolismo , Calcio/metabolismo , Señalización del Calcio
3.
J Thromb Haemost ; 21(7): 1957-1966, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37054918

RESUMEN

BACKGROUND: Pathophysiologic platelet activation leads to thrombo-occlusive diseases such as myocardial infarction or ischemic stroke. Niemann-Pick C1 protein (NPC1) is involved in the regulation of lysosomal lipid trafficking and calcium ion (Ca2+) signaling, and its genetic mutation causes a lysosomal storage disorder. Lipids and Ca2+ are key players in the complex orchestration of platelet activation. OBJECTIVES: The present study aimed to determine the impact of NPC1 on Ca2+ mobilization during platelet activation in thrombo-occlusive diseases. METHODS: Using MK/platelet-specific knockout mice of Npc1 (Npc1Pf4∆/Pf4∆), ex vivo and in vitro approaches as well as in vivo models of thrombosis, we investigated the effect of Npc1 on platelet function and thrombus formation. RESULTS: We showed that Npc1Pf4∆/Pf4∆ platelets display increased sphingosine levels and a locally impaired membrane-associated and SERCA3-dependent Ca2+ mobilisation compared to platelets from wildtype littermates (Npc1lox/lox). Further, we observed decreased platelet. CONCLUSION: Our findings highlight that NPC1 regulates membrane-associated and SERCA3-dependent Ca2+ mobilization during platelet activation and that MK/platelet-specific ablation of Npc1 protects against experimental models of arterial thrombosis and myocardial or cerebral ischemia/reperfusion injury.


Asunto(s)
Proteína Niemann-Pick C1 , Enfermedad de Niemann-Pick Tipo C , Ratones , Animales , Calcio/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Enfermedad de Niemann-Pick Tipo C/genética , Enfermedad de Niemann-Pick Tipo C/metabolismo , Ratones Noqueados
4.
Res Pract Thromb Haemost ; 7(1): 100004, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36970741

RESUMEN

Background: Blood platelet Ca2+ stores are regulated by 2 Ca2+-ATPases (SERCA2b and SERCA3). On thrombin stimulation, nicotinic acid adenosine dinucleotide phosphate mobilizes SERCA3-dependent stores, inducing early adenosine 5'-diphosphate (ADP) secretion, potentiating later SERCA2b-dependent secretion. Objectives: The aim of this study was to identify which ADP P2 purinergic receptor (P2Y1 and/or P2Y12) is(are) involved in the amplification of platelet secretion dependent on the SERCA3-dependent Ca2+ mobilization pathway (SERCA3 stores mobilization) as triggered by low concentration of thrombin. Methods: The study used the pharmacologic antagonists MRS2719 and AR-C69931MX, of the P2Y1 and P2Y12, respectively, as well as Serca3 -/- mice and mice exhibiting platelet lineage-specific inactivation of the P2Y1 or P2Y12 genes. Results: We found that in mouse platelets, pharmacological blockade or gene inactivation of P2Y12 but not of P2Y1 led to a marked inhibition of ADP secretion after platelet stimulation with low concentration of thrombin. Likewise, in human platelets, pharmacological inhibition of P2Y12 but not of P2Y1 alters amplification of thrombin-elicited secretion through SERCA2b stores mobilization. Finally, we show that early SERCA3 stores secretion of ADP is a dense granule secretion, based on parallel adenosine triphosphate and serotonin early secretion. Furthermore, early secretion involves a single granule, based on the amount of adenosine triphosphate released. Conclusion: Altogether, these results show that at low concentrations of thrombin, SERCA3- and SERCA2b-dependent Ca2+ mobilization pathways cross-talk via ADP and activation of the P2Y12, and not the P2Y1 ADP receptor. The relevance in hemostasis of the coupling of the SERCA3 and the SERCA2b pathways is reviewed.

5.
Biochem Biophys Res Commun ; 602: 127-134, 2022 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-35272142

RESUMEN

The immunosuppressant drug Cyclosporin A (CsA) has been widely used to prevent the development of Graft-versus-Host Disease (GvHD) that can occur after transplantation, including allogeneic graft after accidental high-dose irradiation in humans. Here, we show that CsA alone stimulates ICAM-1 overexpression in human pulmonary microvascular endothelial cells (HPMECs) through Toll-Like Receptor 4 (TLR4) and NF-κB activation. In HPMECs, CsA treatment significantly worsened the overexpression of ICAM-1 induced by high-dose irradiation (15 Gy). This additive effect of CsA was also observed when ICAM-1 overexpression was induced by another pathway (Ca2+ entry) in macrovascular endothelial cells. In addition, CsA triggered apoptosis as well as rearrangement of the actin cytoskeleton and adherens junctions (VE-Cadherin) in microvascular endothelial monolayers. High-dose irradiation triggered similar deleterious effects in endothelial monolayers and, again, CsA treatment strongly aggravated the effects of irradiation. Altogether, these results suggest that post-transplant CsA treatment may exacerbate the deleterious effects of irradiation on the endothelium.


Asunto(s)
Ciclosporina , Enfermedad Injerto contra Huésped , Cadherinas/metabolismo , Ciclosporina/farmacología , Células Endoteliales/metabolismo , Humanos , Inmunosupresores/farmacología , Molécula 1 de Adhesión Intercelular/metabolismo
6.
Int J Mol Sci ; 22(16)2021 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-34445542

RESUMEN

Endoglin (Eng) is an endothelial cell (EC) transmembrane glycoprotein involved in adhesion and angiogenesis. Eng mutations result in vessel abnormalities as observed in hereditary hemorrhagic telangiectasia of type 1. The role of Eng was investigated in endothelial functions and permeability under inflammatory conditions, focusing on the actin dynamic signaling pathway. Endothelial Colony-Forming Cells (ECFC) from human cord blood and mouse lung/aortic EC (MLEC, MAEC) from Eng+/+ and Eng+/- mice were used. ECFC silenced for Eng with Eng-siRNA and ctr-siRNA were used to test tubulogenesis and permeability +/- TNFα and +/- LIM kinase inhibitors (LIMKi). In silico modeling of TNFα-Eng interactions was carried out from PDB IDs 5HZW and 5HZV. Calcium ions (Ca2+) flux was studied by Oregon Green 488 in epifluorescence microscopy. Levels of cofilin phosphorylation and tubulin post-translational modifications were evaluated by Western blot. F-actin and actin-tubulin distribution/co-localization were evaluated in cells by confocal microscopy. Eng silencing in ECFCs resulted in a decrease of cell sprouting by 50 ± 15% (p < 0.05) and an increase in pseudo-tube width (41 ± 4.5%; p < 0.001) compared to control. Upon TNFα stimulation, ECFC Eng-siRNA displayed a significant higher permeability compared to ctr-siRNA (p < 0.01), which is associated to a higher Ca2+ mobilization (p < 0.01). Computational analysis suggested that Eng mitigated TNFα activity. F-actin polymerization was significantly increased in ECFC Eng-siRNA, MAEC+/-, and MLEC+/- compared to controls (p < 0.001, p < 0.01, and p < 0.01, respectively) as well as actin/tubulin distribution (p < 0.01). Furthermore, the inactive form of cofilin (P-cofilin at Ser3) was significantly decreased by 36.7 ± 4.8% in ECFC Eng-siRNA compared to ctr-siRNA (p < 0.001). Interestingly, LIMKi reproduced the absence of Eng on TNFα-induced ECFC-increased permeability. Our data suggest that Eng plays a critical role in the homeostasis regulation of endothelial cells under inflammatory conditions (TNFα), and loss of Eng influences ECFC-related permeability through the LIMK/cofilin/actin rearrangement-signaling pathway.


Asunto(s)
Factores Despolimerizantes de la Actina/metabolismo , Permeabilidad de la Membrana Celular , Endoglina/metabolismo , Células Endoteliales/patología , Inflamación/patología , Quinasas Lim/metabolismo , Neovascularización Patológica/patología , Factores Despolimerizantes de la Actina/genética , Animales , Endoglina/genética , Células Endoteliales/metabolismo , Inflamación/genética , Inflamación/metabolismo , Quinasas Lim/genética , Ratones , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo
7.
Physiol Rep ; 9(3): e14613, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33512067

RESUMEN

The Transient Receptor Potential Vanilloid 4 (TRPV4) of endothelial cells contributes to many important functions including the regulation of Ca2+ homeostasis, cell volume, endothelial barrier permeability, and smooth muscle tone. However, its role in the transition of endothelial cells toward a pro-inflammatory phenotype has not been studied so far. Using both arterial and venous endothelial cells, we first show that the pharmacological activation of TRPV4 channels with GSK1016790A, a potent TRPV4 agonist, triggers robust and sustained Ca2+ increases, which are blocked by both TRPV4 antagonists HC067047 and RN9893. TRPV4 activation also triggers the actin cytoskeleton and adherens junction (VE-Cadherin) rearrangement in both arterial and venous endothelial cells and leads to rapid decreases of trans-endothelial electrical resistance. In addition to its effect on endothelial barrier integrity, TRPV4 activation selectively increases ICAM-1 surface expression in arterial and venous endothelial cells, due to the stimulation of ICAM-1 gene expression through the NF-κB transcription factor. TRPV4 channel activation also induced apoptosis of venous and arterial endothelial cells, while TRPV4 blockade reduced apoptosis, even in the absence of TRPV4 activation. As altered barrier integrity, increased adhesion molecule expression and apoptosis are hallmarks of the pro-inflammatory state of endothelial cells, our results indicate that TRPV4 channel activity can induce the transition of both venous and arterial endothelial cells toward a pro-inflammatory phenotype.


Asunto(s)
Células Endoteliales/efectos de los fármacos , Mediadores de Inflamación/metabolismo , Leucina/análogos & derivados , Arteria Pulmonar/efectos de los fármacos , Sulfonamidas/farmacología , Canales Catiónicos TRPV/agonistas , Antígenos CD/metabolismo , Apoptosis , Cadherinas/metabolismo , Señalización del Calcio , Células Cultivadas , Impedancia Eléctrica , Células Endoteliales/inmunología , Células Endoteliales/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/inmunología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/metabolismo , Leucina/farmacología , FN-kappa B/metabolismo , Permeabilidad , Fenotipo , Arteria Pulmonar/inmunología , Arteria Pulmonar/metabolismo , Canales Catiónicos TRPV/metabolismo
8.
Circ Res ; 127(7): e166-e183, 2020 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-32588751

RESUMEN

RATIONALE: Ca2+ signaling is a key and ubiquitous actor of cell organization and its modulation controls many cellular responses. SERCAs (sarco-endoplasmic reticulum Ca2+-ATPases) pump Ca2+ into internal stores that play a major role in the cytosolic Ca2+ concentration rise upon cell activation. Platelets exhibit 2 types of SERCAs, SERCA2b and SERCA3 (SERCA3 deficient mice), which may exert specific roles, yet ill-defined. We have recently shown that Ca2+ mobilization from SERCA3-dependent stores was required for full platelet activation in weak stimulation conditions. OBJECTIVE: To uncover the signaling mechanisms associated with Ca2+ mobilization from SERCA3-dependent stores leading to ADP secretion. METHODS AND RESULTS: Using platelets from wild-type or Serca3-deficient mice, we demonstrated that an early (within 5-10 s following stimulation) secretion of ADP specifically dependent on SERCA3 stored Ca2+ is exclusively mobilized by nicotinic acid adenosine dinucleotide-phosphate (NAADP): both Ca2+ mobilization from SERCA3-dependent stores and primary ADP secretion are blocked by the NAADP receptor antagonist Ned-19, and reciprocally both are stimulated by permeant NAADP. In contrast, Ca2+ mobilization from SERCA3-dependent stores and primary ADP secretion were unaffected by inhibition of the production of IP3 (inositol-1,4,5-trisphosphate) by phospholipase-C and accordingly were not stimulated by permeant IP3. CONCLUSIONS: Upon activation, an NAADP/SERCA3 Ca2+ mobilization pathway initiates an early ADP secretion, potentiating platelet activation, and a secondary wave of ADP secretion driven by both an IP3/SERCA2b-dependent Ca2+ stores pathway and the NAADP/SERCA3 pathway. This does not exclude that Ca2+ mobilized from SERCA3 stores may also enhance platelet global reactivity to agonists. Because of its modulating effect on platelet activation, this NAADP-SERCA3 pathway may be a relevant target for anti-thrombotic therapy. Graphic Abstract: A graphic abstract is available for this article.


Asunto(s)
Adenosina Difosfato/sangre , Comunicación Autocrina , Plaquetas/enzimología , Señalización del Calcio , NADP/análogos & derivados , Activación Plaquetaria , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/sangre , Animales , Comunicación Autocrina/efectos de los fármacos , Plaquetas/efectos de los fármacos , Señalización del Calcio/efectos de los fármacos , Humanos , Inositol 1,4,5-Trifosfato/sangre , Ratones Endogámicos C57BL , Ratones Noqueados , NADP/sangre , Activación Plaquetaria/efectos de los fármacos , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , Vías Secretoras , Trombina/farmacología , Tromboxano A2/sangre , Factores de Tiempo
9.
Thromb Haemost ; 119(3): 384-396, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30650444

RESUMEN

In obesity, platelets are described as hyperactive, mainly based on increased platelet size and presence of pro-thrombotic plasmatic molecules. We explored platelet functions, including calcium signalling in obesity, and the effect of weight loss. We included 40 obese patients (women with body mass index [BMI] of ≥ 35 kg/m2) who were to undergo gastric bypass surgery and 40 healthy lean subjects (women with BMI of < 25 kg/m2) as a control group. Approximately 1 year after surgery, the obese patients lost weight (75% had a BMI < 35 kg/m2). They were explored a second time with the same healthy control for the same platelet experiments. Compared with controls, obese patients' platelets displayed reduced sensitivity to thrombin (aggregation EC50 increased by 1.9 ± 0.3-fold, p = 0.005) and a lower Ca2+ response (70 ± 7% decrease, p < 10-4). In 17 pairs of patients, we performed additional experiments: in obese patients' platelets, thrombin-induced αIIbß3 activation was significantly lower (p = 0.003) and sarco-endoplasmic reticulum Ca2+ATPase (SERCA3) expression was decreased (48 ± 6% decrease, p < 10-4). These differences were abolished after weight loss. Interestingly, pharmacological inhibition of SERCA3 activity in control group's platelets mimicked similar alterations than in obese patients' platelets and was associated with defective adenosine diphosphate (ADP) secretion. Addition of ADP to agonist restored platelet functions in obese patients and in SERCA3-inhibited control platelets (five experiments) confirming the direct involvement of the SERCA3-dependent ADP secretion pathway. This is the first study demonstrating that platelets from obese patients are hypo-reactive, due to a deficiency of SERCA3-dependent ADP secretion. Weight loss restores SERCA3 activity and subsequent calcium signalling, αIIbß3 activation, platelet aggregation and ADP secretion.


Asunto(s)
Adenosina Difosfato/sangre , Plaquetas/metabolismo , Derivación Gástrica , Obesidad/cirugía , Activación Plaquetaria , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/sangre , Pérdida de Peso , Adulto , Señalización del Calcio , Femenino , Humanos , Obesidad/sangre , Obesidad/diagnóstico , Obesidad/fisiopatología , Paris , Agregación Plaquetaria , Pruebas de Función Plaquetaria , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Vías Secretoras , Factores de Tiempo , Resultado del Tratamiento
10.
Arterioscler Thromb Vasc Biol ; 38(2): 386-397, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29284605

RESUMEN

OBJECTIVE: Here, we provide evidence for the role of FLNA (filamin A) in the modulation of store-operated calcium entry (SOCE). APPROACH AND RESULTS: SOCE is a major mechanism for calcium influx controlled by the intracellular Ca2+ stores. On store depletion, the endoplasmic reticulum calcium sensor STIM1 (stromal interaction molecule 1) redistributes into puncta at endoplasmic reticulum/plasma membrane junctions, a process supported by the cytoskeleton, where it interacts with the calcium channels; however, the mechanism for fine-tuning SOCE is not completely understood. Our results demonstrate that STIM1 interacts with FLNA on calcium store depletion in human platelets. The interaction is dependent on the phosphorylation of FLNA at Ser2152 by the cAMP-dependent protein kinase. Impairment of FLNA phosphorylation and knockdown of FLNA expression using siRNA increased SOCE in platelets. Similarly, SOCE was significantly greater in FLNA-deficient melanoma M2 cells than in the FLNA-expressing M2 subclone A7. Expression of FLNA in M2 cells attenuated SOCE, an effect prevented when the cells were transfected with the nonphosphorylatable FLNA S2152A mutant. Transfection of M2 cells with the STIM1(K684,685E) mutant reduced the STIM1-FLNA interaction. In platelets, attenuation of FLNA expression using siRNA resulted in enhanced association of STIM1 with the cytoskeleton, greater STIM1-Orai1 interaction, and SOCE. Introduction of an anti-FLNA (2597-2647) antibody attenuated the STIM1-FLNA interaction and enhanced thrombin-induced platelet aggregation. CONCLUSIONS: Our results indicate that FLNA modulates SOCE and then the correct platelet function, by fine-tuning the distribution of STIM1 in the cytoskeleton and the interaction with Orai1 channels.


Asunto(s)
Plaquetas/metabolismo , Señalización del Calcio , Calcio/metabolismo , Filaminas/metabolismo , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/metabolismo , Molécula de Interacción Estromal 1/metabolismo , Línea Celular Tumoral , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Citoesqueleto/metabolismo , Filaminas/genética , Humanos , Activación del Canal Iónico , Melanoma/genética , Melanoma/metabolismo , Proteínas de Neoplasias/genética , Proteína ORAI1/genética , Fosforilación , Agregación Plaquetaria , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Serina , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/metabolismo , Molécula de Interacción Estromal 1/genética
11.
Blood ; 128(8): 1129-38, 2016 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-27301859

RESUMEN

The role of the sarco-endoplasmic reticulum calcium (Ca(2+)) adenosine triphosphatase (ATPase) 3 (SERCA3) in platelet physiology remains poorly understood. Here, we show that SERCA3 knockout (SERCA3(-/-)) mice exhibit prolonged tail bleeding time and rebleeding. Thrombus formation was delayed both in arteries and venules in an in vivo ferric chloride-induced thrombosis model. Defective platelet adhesion and thrombus growth over collagen was confirmed in vitro. Adenosine 5'-diphosphate (ADP) removal by apyrase diminished adhesion and thrombus growth of control platelets to the level of SERCA3(-/-) platelets. Aggregation, dense granule secretion, and Ca(2+) mobilization of SERCA3(-/-) platelets induced by low collagen or low thrombin concentration were weaker than controls. Accordingly, SERCA3(-/-) platelets exhibited a partial defect in total stored Ca(2+) and in Ca(2+) store reuptake following thrombin stimulation. Importantly ADP, but not serotonin, rescued aggregation, secretion, and Ca(2+) mobilization in SERCA3(-/-) platelets, suggesting specificity. Dense granules appeared normal upon electron microscopy, mepacrine staining, and total serotonin content, ruling out a dense granule defect. ADP induced normal platelet aggregation, excluding a defect in ADP activation pathways. The SERCA3-specific inhibitor 2,5-di-(tert-butyl)-1,4-benzohydroquinone diminished both Ca(2+) mobilization and secretion of control platelets, as opposed to the SERCA2b inhibitor thapsigargin. This confirmed the specific role of catalytically active SERCA3 in ADP secretion. Accordingly, SERCA3-dependent Ca(2+) stores appeared depleted in SERCA3(-/-) platelets. Finally, αIIbß3 integrin blockade did not affect SERCA3-dependent secretion, therefore proving independent of αIIbß3 engagement. Altogether, these results show that SERCA3-dependent Ca(2+) stores control a specific ADP secretion pathway required for full platelet secretion induced by agonists at low concentration and independent of αIIbß3.


Asunto(s)
Adenosina Difosfato/metabolismo , Plaquetas/enzimología , Calcio/metabolismo , Activación Plaquetaria , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Animales , Tiempo de Sangría , Plaquetas/efectos de los fármacos , Señalización del Calcio/efectos de los fármacos , Eliminación de Gen , Hemorreología/efectos de los fármacos , Hemostasis/efectos de los fármacos , Caballos , Ratones Endogámicos C57BL , Activación Plaquetaria/efectos de los fármacos , Adhesividad Plaquetaria/efectos de los fármacos , Agregación Plaquetaria/efectos de los fármacos , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/deficiencia , Serotonina/farmacología , Trombosis/patología
12.
Adv Exp Med Biol ; 898: 333-52, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27161235

RESUMEN

Calcium ions (Ca(2+)) are versatile messengers that need to be tidily regulated in time and space in order to create a large number of signals. The coupling between Ca(2+) entry and Ca(2+) refilling is playing a central role in this Ca(2+) homeostasis. Since the capacitative Ca(2+) entry has been described, different mechanisms have been proposed in order to explain how the Ca(2+) entry could be under control of intracellular store Ca(2+) depletion. Today, in addition of STIM1 and Orai1, the two major elements of SOCe, increasing attention is put on the role of the transient receptor potential canonical (TRPC), that can form protein clusters with Orai1, and Sarco/endoplasmic reticulum Ca(2+)ATPases (SERCAs), that refill the stores and are also located in the same environment than SOC clusters. Altogether, these proteins elaborate either Ca(2+) microdomains in the vicinity of the membrane or larger Ca(2+) increases overtaking the whole cell. The coupling between Ca(2+) entry and Ca(2+) refilling can possibly act much further away from the plasma membrane. Ca(2+), uptaken by SERCAs, have been described to move faster and further in the ER than in the cytosol and to create specific signal that depends on Ca(2+) entry but at longer distance from it. The complexity of such created Ca(2+) currents resides in the heteromeric nature of channels as well as the presence of different intracellular stores controlled by SERCA2b and SERCA3, respectively. A role for mitochondria has also been explored. To date, mitochondria are other crucial compartments that play an important role in Ca(2+) homeostasis. Although mitochondria mostly interact with intracellular stores, coupling of Ca(2+) entry and mitochondria cannot be completely rule out.


Asunto(s)
Calcio/metabolismo , Animales , Humanos , Transporte Iónico , Mitocondrias/enzimología , Mitocondrias/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Canales Catiónicos TRPC/metabolismo
13.
Blood ; 127(7): 908-20, 2016 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-26634301

RESUMEN

Apelin peptide and its receptor APJ are directly implicated in various physiological processes ranging from cardiovascular homeostasis to immune signaling. Here, we show that apelin is a key player in hemostasis with an ability to inhibit thrombin- and collagen-mediated platelet activation. Mice lacking apelin displayed a shorter bleeding time and a prothrombotic profile. Their platelets exhibited increased adhesion and a reduced occlusion time in venules, and displayed a higher aggregation rate after their activation by thrombin compared with wild-type platelets. Consequently, human and mouse platelets express apelin and its receptor APJ. Apelin directly interferes with thrombin-mediated signaling pathways and platelet activation, secretion, and aggregation, but not with ADP and thromboxane A2-mediated pathways. IV apelin administration induced excessive bleeding and prevented thrombosis in mice. Taken together, these findings suggest that apelin and/or APJ agonists could potentially be useful adducts in antiplatelet therapies and may provide a promising perspective for patients who continue to display adverse thrombotic events with current antiplatelet therapies.


Asunto(s)
Adipoquinas/metabolismo , Plaquetas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Adhesividad Plaquetaria , Transducción de Señal , Adipoquinas/genética , Adipoquinas/farmacología , Animales , Apelina , Receptores de Apelina , Hemorragia/inducido químicamente , Hemorragia/genética , Hemorragia/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/farmacología , Ratones , Ratones Noqueados , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Trombina/genética , Trombina/metabolismo , Trombosis/genética , Trombosis/metabolismo , Trombosis/prevención & control , Tromboxano A2/genética , Tromboxano A2/metabolismo
14.
Biochim Biophys Acta ; 1853(11 Pt A): 2870-84, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26260012

RESUMEN

The importance of the oncogene Ras in cardiac hypertrophy is well appreciated. The hypertrophic effects of the constitutively active mutant Ras-Val12 are revealed by clinical syndromes due to the Ras mutations and experimental studies. We examined the possible anti-hypertrophic effect of Ras inhibition in vitro using rat neonatal cardiomyocytes (NRCM) and in vivo in the setting of pressure-overload left ventricular (LV) hypertrophy (POH) in rats. Ras functions were modulated via adenovirus directed gene transfer of active mutant Ras-Val12 or dominant negative mutant N17-DN-Ras (DN-Ras). Ras-Val12 expression in vitro activates NFAT resulting in pro-hypertrophic and cardio-toxic effects on NRCM beating and Z-line organization. In contrast, the DN-Ras was antihypertrophic on NRCM, inhibited NFAT and exerted cardio-protective effects attested by preserved NRCM beating and Z line structure. Additional experiments with silencing H-Ras gene strategy corroborated the antihypertrophic effects of siRNA-H-Ras on NRCM. In vivo, with the POH model, both Ras mutants were associated with similar hypertrophy two weeks after simultaneous induction of POH and Ras-mutant gene transfer. However, LV diameters were higher and LV fractional shortening lower in the Ras-Val12 group compared to control and DN-Ras. Moreover, DN-Ras reduced the cross-sectional area of cardiomyocytes in vivo, and decreased the expression of markers of pathologic cardiac hypertrophy. In isolated adult cardiomyocytes after 2 weeks of POH and Ras-mutant gene transfer, DN-Ras improved sarcomere shortening and calcium transients compared to Ras-Val12. Overall, DN-Ras promotes a more physiological form of hypertrophy, suggesting an interesting therapeutic target for pathological cardiac hypertrophy.


Asunto(s)
Cardiomegalia/enzimología , Mutación Missense , Miocardio/enzimología , Miocitos Cardíacos/enzimología , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Remodelación Ventricular , Sustitución de Aminoácidos , Animales , Cardiomegalia/genética , Cardiomegalia/patología , Miocardio/patología , Miocitos Cardíacos/patología , Ratas , Ratas Sprague-Dawley , Sarcómeros/enzimología , Sarcómeros/genética
15.
Biochim Biophys Acta ; 1843(11): 2705-18, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25110346

RESUMEN

UNLABELLED: The sarco(endo)plasmic reticulum Ca(2+)ATPases (SERCA) system, a key regulator of calcium cycling and signaling, is composed of several isoforms. We aimed to characterize the expression of SERCA isoforms in mouse cardiovascular tissues and their modulation in cardiovascular pathologies (heart failure and/or atherosclerosis). Five isoforms (SERCA2a, 2b, 3a, 3b and 3c) were detected in the mouse heart and thoracic aorta. Absolute mRNA quantification revealed SERCA2a as the dominant isoform in the heart (~99%). Both SERCA2 isoforms co-localized in cardiomyocytes (CM) longitudinal sarcoplasmic reticulum (SR), SERCA3b was located at the junctional SR. In the aorta, SERCA2a accounted for ~91% of total SERCA and SERCA2b for ~5%. Among SERCA3, SERCA3b was the most expressed (~3.3%), mainly found in vascular smooth muscle cells (VSMC), along with SERCA2a and 2b. In failing CM, SERCA2a was down-regulated by 2-fold and re-localized from longitudinal to junctional SR. A strong down-regulation of SERCA2a was also observed in atherosclerotic vessels containing mainly synthetic VSMCs. The proportion of both SERCA2b and SERCA3b increased to 9.5% and 8.3%, respectively. IN CONCLUSION: 1) SERCA2a is the major isoform in both cardiac and vascular myocytes; 2) the expression of SERCA2a mRNA is ~30 fold higher in the heart compared to vascular tissues; and 3) nearly half the amount of SERCA2a mRNA is measured in both failing cardiomyocytes and synthetic VSMCs compared to healthy tissues, with a relocation of SERCA2a in failing cardiomyocytes. Thus, SERCA2a is the principal regulator of excitation-contraction coupling in both CMs and contractile VSMCs.

16.
Blood ; 124(16): 2554-63, 2014 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-25061177

RESUMEN

Macrothrombocytopenias are the most important subgroup of inherited thrombocytopenias. This subgroup is particularly heterogeneous because the affected genes are involved in various functions such as cell signaling, cytoskeleton organization, and gene expression. Herein we describe the clinical and hematological features of a consanguineous family with a severe autosomal recessive macrothrombocytopenia associated with a thrombocytopathy inducing a bleeding tendency in the homozygous mutated patients. Platelet activation and cytoskeleton reorganization were impaired in these homozygous patients. Exome sequencing identified a c.222C>G mutation (missense p.74Ile>Met) in PRKACG, a gene encoding the γ-catalytic subunit of the cyclic adenosine monophosphate-dependent protein kinase, the mutated allele cosegregating with the macrothrombocytopenia. We demonstrate that the p.74Ile>Met PRKACG mutation is associated with a marked defect in proplatelet formation and a low level in filamin A in megakaryocytes (MKs). The defect in proplatelet formation was rescued in vitro by lentiviral vector-mediated overexpression of wild-type PRKACG in patient MKs. We thus conclude that PRKACG is a new central actor in platelet biogenesis and a new gene involved in inherited thrombocytopenia with giant platelets associated with a thrombocytopathy.


Asunto(s)
Plaquetas/patología , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/genética , Mutación de Línea Germinal , Megacariocitos/patología , Trombocitopenia/genética , Adulto , Plaquetas/metabolismo , Preescolar , Citoesqueleto/genética , Citoesqueleto/patología , Humanos , Lactante , Masculino , Megacariocitos/metabolismo , Linaje , Recuento de Plaquetas , Trombocitopenia/complicaciones , Trombocitopenia/patología , Adulto Joven
17.
Circulation ; 130(11): 880-891, 2014 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-24993099

RESUMEN

BACKGROUND: Pulmonary arterial hypertension (PH), whether idiopathic or related to underlying diseases such as HIV infection, results from complex vessel remodeling involving both pulmonary artery smooth muscle cell (PA-SMC) proliferation and inflammation. CCR5, a coreceptor for cellular HIV-1 entry expressed on macrophages and vascular cells, may be involved in the pathogenesis of PH. Maraviroc is a new CCR5 antagonist designed to block HIV entry. METHODS AND RESULTS: Marked CCR5 expression was found in lungs from patients with idiopathic PH, in mice with hypoxia-induced PH, and in Simian immunodeficiency virus-infected macaques, in which it was localized chiefly in the PA-SMCs. To assess the role for CCR5 in experimental PH, we used both gene disruption and pharmacological CCR5 inactivation in mice. Because maraviroc does not bind to murine CCR5, we used human-CCR5ki mice for pharmacological and immunohistochemical studies. Compared with wild-type mice, CCR5-/- mice or human-CCR5ki mice treated with maraviroc exhibited decreased PA-SMC proliferation and recruitment of perivascular and alveolar macrophages during hypoxia exposure. CCR5-/- mice reconstituted with wild-type bone marrow cells and wild-type mice reconstituted with CCR5-/- bone marrow cells were protected against PH, suggesting CCR5-mediated effects on PA-SMCs and macrophage involvement. The CCR5 ligands CCL5 and the HIV-1 gp120 protein increased intracellular calcium and induced growth of human and human-CCR5ki mouse PA-SMCs; maraviroc inhibited both effects. Maraviroc also reduced the growth-promoting effects of conditioned media from CCL5-activated macrophages derived from human-CCR5ki mice on PA-SMCs from wild-type mice. CONCLUSION: The CCL5-CCR5 pathway represents a new therapeutic target in PH associated with HIV or with other conditions.


Asunto(s)
Antagonistas de los Receptores CCR5 , Ciclohexanos/farmacología , Hipertensión Pulmonar/tratamiento farmacológico , Síndrome de Inmunodeficiencia Adquirida del Simio/tratamiento farmacológico , Triazoles/farmacología , Animales , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Hipertensión Pulmonar Primaria Familiar , Inhibidores de Fusión de VIH/farmacología , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/patología , Humanos , Hipertensión Pulmonar/patología , Hipertensión Pulmonar/virología , Hipoxia/tratamiento farmacológico , Hipoxia/patología , Macaca mulatta , Macrófagos/efectos de los fármacos , Masculino , Maraviroc , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/patología , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/patología , Receptores CCR5/genética , Síndrome de Inmunodeficiencia Adquirida del Simio/patología
18.
Circulation ; 129(7): 773-85, 2014 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-24249716

RESUMEN

BACKGROUND: Phenotypic modulation or switching of vascular smooth muscle cells from a contractile/quiescent to a proliferative/synthetic phenotype plays a key role in vascular proliferative disorders such as atherosclerosis and restenosis. Although several calcium handling proteins that control differentiation of smooth muscle cells have been identified, the role of protein phosphatase inhibitor 1 (I-1) in the acquisition or maintenance of the contractile phenotype modulation remains unknown. METHODS AND RESULTS: In human coronary arteries, I-1 and sarco/endoplasmic reticulum Ca2+ -ATPase expression is specific to contractile vascular smooth muscle cells. In synthetic cultured human coronary artery smooth muscle cells, protein phosphatase inhibitor 1 (I-1 target) is highly expressed, leading to a decrease in phospholamban phosphorylation, sarco/endoplasmic reticulum Ca2+ -ATPase, and cAMP-responsive element binding activity. I-1 knockout mice lack phospholamban phosphorylation and exhibit vascular smooth muscle cell arrest in the synthetic state with excessive neointimal proliferation after carotid injury, as well as significant modifications of contractile properties and relaxant response to acetylcholine of femoral artery in vivo. Constitutively active I-1 gene transfer decreased neointimal formation in an angioplasty rat model by preventing vascular smooth muscle cell contractile to synthetic phenotype change. CONCLUSIONS: I-1 and sarco/endoplasmic reticulum Ca2+ -ATPase synergistically induce the vascular smooth muscle cell contractile phenotype. Gene transfer of constitutively active I-1 is a promising therapeutic strategy for preventing vascular proliferative disorders.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Músculo Liso Vascular/metabolismo , Proteína Fosfatasa 1/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Vasoconstricción/fisiología , Animales , Aorta Torácica/citología , Aorta Torácica/fisiología , Señalización del Calcio/fisiología , Vasos Coronarios/citología , Vasos Coronarios/fisiología , Arteria Femoral/citología , Arteria Femoral/fisiología , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Arterias Mamarias/citología , Arterias Mamarias/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/citología , Fenotipo , Proteína Fosfatasa 1/genética , Proteínas/genética , Proteínas/metabolismo , Ratas , Ratas Sprague-Dawley , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , Enfermedades Vasculares/genética , Enfermedades Vasculares/metabolismo
19.
J Clin Invest ; 123(12): 5071-81, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24270421

RESUMEN

von Willebrand disease type 2B (vWD-type 2B) is characterized by gain-of-function mutations in von Willebrand factor (vWF) that enhance its binding to the glycoprotein Ib-IX-V complex on platelets. Patients with vWD-type 2B have a bleeding tendency that is linked to loss of vWF multimers and/or thrombocytopenia. In this study, we uncovered evidence that platelet dysfunction is a third possible mechanism for bleeding tendency. We found that platelet aggregation, secretion, and spreading were diminished due to inhibition of integrin αIIbß3 in platelets from mice expressing a vWD-type 2B-associated vWF (vWF/p.V1316M), platelets from a patient with the same mutation, and control platelets pretreated with recombinant vWF/p.V1316M. Impaired platelet function coincided with reduced thrombus growth. Further, αIIbß3 activation and activation of the small GTPase Rap1 were impaired by vWF/p.V1316M following exposure to platelet agonists (thrombin, ADP, or convulxin). Conversely, thrombin- or ADP-induced Ca2+ store release, which is required for αIIbß3 activation, was normal, indicating that vWF/p.V1316M acts downstream of Ca2+ release and upstream of Rap1. We found normal Syk phosphorylation and PLCγ2 activation following collagen receptor signaling, further implying that vWF/p.V1316M acts directly on or downstream of Ca2+ release. These data indicate that the vWD-type 2B mutation p.V1316M is associated with severe thrombocytopathy, which likely contributes to the bleeding tendency in vWD-type 2B.


Asunto(s)
Sustitución de Aminoácidos , Trastornos Hemorrágicos/etiología , Mutación Missense , Agregación Plaquetaria/genética , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/antagonistas & inhibidores , Mutación Puntual , Enfermedad de von Willebrand Tipo 2/genética , Factor de von Willebrand/genética , Adenosina Trifosfato/metabolismo , Animales , Plaquetas/metabolismo , Señalización del Calcio/fisiología , Trastornos Hemorrágicos/fisiopatología , Humanos , Péptidos y Proteínas de Señalización Intracelular/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Fosfolipasa C gamma/fisiología , Fosforilación , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/fisiología , Procesamiento Proteico-Postraduccional , Proteínas Tirosina Quinasas/fisiología , Receptores de Colágeno/fisiología , Proteínas Recombinantes de Fusión/metabolismo , Quinasa Syk , Proteínas de Unión al GTP rap1/metabolismo , Enfermedad de von Willebrand Tipo 2/sangre , Factor de von Willebrand/fisiología
20.
Arterioscler Thromb Vasc Biol ; 33(12): 2750-8, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24115034

RESUMEN

OBJECTIVE: Apoptotic-like phase is an essential step for the platelet formation from megakaryocytes. How controlled is this signaling pathway remained poorly understood. The aim of this study was to determine whether endoplasmic reticulum (ER) stress-induced apoptosis occurs during thrombopoiesis. APPROACH AND RESULTS: Investigation of ER stress and maturation markers in different models of human thrombopoiesis (CHRF, DAMI, MEG-01 cell lines, and hematopoietic stem cells: CD34(+)) as well as in immature pathological platelets clearly indicated that ER stress occurs transiently during thrombopoiesis. Direct ER stress induction by tunicamycin, an inhibitor of N-glycosylation, or by sarco/endoplasmic reticulum Ca(2+) ATPase type 3b overexpression, which interferes with reticular calcium, leads to some degree of maturation in megakaryocytic cell lines. On the contrary, exposure to salubrinal, a phosphatase inhibitor that prevents eukaryotic translation initiation factor 2α-P dephosphorylation and inhibits ER stress-induced apoptosis, decreased both expression of maturation markers in MEG-01 and CD34(+) cells as well as numbers of mature megakaryocytes and proplatelet formation in cultured CD34(+) cells. CONCLUSIONS: Taken as a whole, our research suggests that transient ER stress activation triggers the apoptotic-like phase of the thrombopoiesis process.


Asunto(s)
Estrés del Retículo Endoplásmico , Retículo Endoplásmico/metabolismo , Células Madre Hematopoyéticas/metabolismo , Megacariocitos/metabolismo , Trombopoyesis , Antígenos CD34/metabolismo , Apoptosis , Biomarcadores/metabolismo , Línea Celular , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/patología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Factor 2 Eucariótico de Iniciación/metabolismo , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/patología , Humanos , Megacariocitos/efectos de los fármacos , Megacariocitos/patología , Fosforilación , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Trombopoyesis/efectos de los fármacos , Factores de Tiempo , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA