Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Extracell Biol ; 3(1)2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38405579

RESUMEN

The 'QuantitatEVs: multiscale analyses, from bulk to single vesicle' workshop aimed to discuss quantitative strategies and harmonized wet and computational approaches toward the comprehensive analysis of extracellular vesicles (EVs) from bulk to single vesicle analyses with a special focus on emerging technologies. The workshop covered the key issues in the quantitative analysis of different EV-associated molecular components and EV biophysical features, which are considered the core of EV-associated biomarker discovery and validation for their clinical translation. The in-person-only workshop was held in Trento, Italy, from January 31st to February 2nd, 2023, and continued in Milan on February 3rd with "Next Generation EVs", a satellite event dedicated to early career researchers (ECR). This report summarizes the main topics and outcomes of the workshop.

2.
J Nanobiotechnology ; 22(1): 60, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38347587

RESUMEN

Mesenchymal stem cells/stromal cells (MSCs)-derived extracellular vesicles (EVs) mediate pro-regenerative effects in damaged ischemic tissues by regulating angiogenesis. MSCs-EVs modulate functions of cells including endogenous mature cells, progenitors and stem cells, resulting in restoration of blood flow. However, the mechanisms underlying such MSC-EV activity still remain poorly understood. The present study analyzes biological effects of bone marrow (BM) MSC-EVs on endothelial cells (ECs) in ischemic tissues both in in vitro and in vivo conditions and elucidates the molecular mechanisms underlying the tissue repair. MSC-EVs were isolated from murine BM-derived MSCs and their morphological, antigenic and molecular composition regarding protein and microRNA levels were evaluated to examine their properties. Global proteomic analysis demonstrated the presence in MSC-EVs of proteins regulating pro-regenerative pathways, including integrin α5 (Itgα5) and neuropilin-1 (NRP1) involved in lymphangiogenesis. MSC-EVs were also enriched in microRNAs regulating angiogenesis, TGF-ß signaling and processes guiding cellular adhesion and interactions with extracellular matrix. The functional effects of MSC-EVs on capillary ECs in vitro included the increase of capillary-like tube formation and cytoprotection under normal and inflammatory conditions by inhibiting apoptosis. Notably, MSC-EVs enhanced also capillary-like tube formation of lymphatic ECs, which may be regulated by Itgα5 and NRP1. Moreover, in a mouse model of critical hind limb ischemia, MSC-EVs increased the recovery of blood flow in ischemic muscle tissue, which was accompanied with increased vascular density in vivo. This pro-angiogenic effect was associated with an increase in nitric oxide (NO) production via endothelial NO-synthase activation in ischemic muscles. Interestingly, MSC-EVs enhanced lymphangiogenesis, which has never been reported before. The study provides evidence on pro-angiogenic and novel pro-lymphangiogenic role of MSC-EVs on ECs in ischemic tissue mediated by their protein and miRNA molecular cargos. The results highlight Itgα5 and NRP1 carried by MSC-EVs as potential therapeutic targets to boost lymphangiogenesis.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , MicroARNs , Animales , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Neuropilina-1/metabolismo , Células Endoteliales/metabolismo , Linfangiogénesis , Proteómica , Vesículas Extracelulares/metabolismo , Isquemia/metabolismo
3.
FASEB J ; 38(2): e23415, 2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38243682

RESUMEN

Emerging evidence suggests that stem cell-derived extracellular vesicles (EVs) may induce pro-regenerative effects in ischemic tissues by delivering bioactive molecules, including microRNAs. Recent studies have also shown pro-regenerative benefits of EVs derived from induced pluripotent stem (iPS) cells. However, the underlying mechanisms of EV benefits and the role of their transferred regulatory molecules remain incompletely understood. Accordingly, we investigated the effects of human iPS-derived EVs (iPS-EVs) enriched in proangiogenic miR-126 (iPS-miR-126-EVs) on functional properties of human endothelial cells (ECs) in vitro. We also examined the outcomes following EV injection in a murine model of limb ischemia in vivo. EVs were isolated from conditioned media from cultures of unmodified and genetically modified human iPS cells overexpressing miR-126. The iPS-miR-126-EVs were enriched in miR-126 when compared with control iPS-EVs and effectively transferred miR-126 along with other miRNAs to recipient ECs improving their functional properties essential for ischemic tissue repair, including proliferation, metabolic activity, cell survival, migration, and angiogenic potential. Injection of iPS-miR-126-EVs in vivo in a murine model of acute limb ischemia promoted angiogenesis, increased perfusion, and enhanced functional recovery. These observations corresponded with elevated expression of genes for several proangiogenic factors in ischemic tissues following iPS-miR-126-EV transplantation. These results indicate that innate pro-regenerative properties of iPS-EVs may be further enhanced by altering their molecular composition via controlled genetic modifications. Such iPS-EVs overexpressing selected microRNAs, including miR-126, may represent a novel acellular tool for therapy of ischemic tissues in vivo.


Asunto(s)
Vesículas Extracelulares , Células Madre Pluripotentes Inducidas , MicroARNs , Humanos , Ratones , Animales , Células Madre Pluripotentes Inducidas/metabolismo , Células Endoteliales/metabolismo , Modelos Animales de Enfermedad , MicroARNs/genética , MicroARNs/metabolismo , Vesículas Extracelulares/metabolismo , Isquemia/terapia , Isquemia/metabolismo
4.
Biochim Biophys Acta Mol Cell Res ; 1871(2): 119647, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38092134

RESUMEN

The molecular mechanisms behind electrotaxis remain largely unknown, with no identified primary direct current electric field (dcEF) sensor. Two leading hypotheses propose mechanisms involving the redistribution of charged components in the cell membrane (driven by electrophoresis or electroosmosis) and the asymmetric activation of ion channels. To investigate these mechanisms, we studied the dynamics of electrotactic behaviour of mouse 3T3 fibroblasts. We observed that 3T3 fibroblasts exhibit cathodal migration within just 1 min when exposed to physiological dcEF. This rapid response suggests the involvement of ion channels in the cell membrane. Our large-scale screening method identified several ion channel genes as potential key players, including the inwardly rectifying potassium channel Kir4.2. Blocking the Kir channel family with Ba2+ or silencing the Kcnj15 gene, encoding Kir4.2, significantly reduced the directional migration of 3T3 cells. Additionally, the levels of the intracellular regulators of Kir channels, spermine (SPM) and spermidine (SPD), had a significant impact on cell directionality. Interestingly, inhibiting Kir4.2 resulted in the temporary cessation of electrotaxis for approximately 1-2 h before its return. This observation suggests a two-phase mechanism for the electrotaxis of mouse 3T3 fibroblasts, where ion channel activation triggers the initial rapid response to dcEF, and the subsequent redistribution of membrane receptors sustains long-term directional movement. In summary, our study unveils the involvement of Kir channels and proposes a biphasic mechanism to explain the electrotactic behaviour of mouse 3T3 fibroblasts, shedding light on the molecular underpinnings of electrotaxis.


Asunto(s)
Fibroblastos , Espermidina , Ratones , Animales , Movimiento Celular/genética , Membrana Celular/metabolismo , Fibroblastos/metabolismo , Espermidina/metabolismo , Canales Iónicos/metabolismo
5.
BMC Med ; 21(1): 412, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37904135

RESUMEN

BACKGROUND: Cardiac fibrosis is one of the top killers among fibrotic diseases and continues to be a global unaddressed health problem. The lack of effective treatment combined with the considerable socioeconomic burden highlights the urgent need for innovative therapeutic options. Here, we evaluated the anti-fibrotic properties of extracellular vesicles (EVs) derived from human induced pluripotent stem cells (hiPSCs) that were cultured under various oxygen concentrations. METHODS: EVs were isolated from three hiPSC lines cultured under normoxia (21% O2; EV-N) or reduced oxygen concentration (hypoxia): 3% O2 (EV-H3) or 5% O2 (EV-H5). The anti-fibrotic activity of EVs was tested in an in vitro model of cardiac fibrosis, followed by a detailed investigation of the underlying molecular mechanisms. Sequencing of EV miRNAs combined with bioinformatics analysis was conducted and a selected miRNA was validated using a miRNA mimic and inhibitor. Finally, EVs were tested in a mouse model of angiotensin II-induced cardiac fibrosis. RESULTS: We provide evidence that an oxygen concentration of 5% enhances the anti-fibrotic effects of hiPS-EVs. These EVs were more effective in reducing pro-fibrotic markers in activated human cardiac fibroblasts, when compared to EV-N or EV-H3. We show that EV-H5 act through the canonical TGFß/SMAD pathway, primarily via miR-302b-3p, which is the most abundant miRNA in EV-H5. Our results show that EV-H5 not only target transcripts of several profibrotic genes, including SMAD2 and TGFBR2, but also reduce the stiffness of activated fibroblasts. In a mouse model of heart fibrosis, EV-H5 outperformed EV-N in suppressing the inflammatory response in the host and by attenuating collagen deposition and reducing pro-fibrotic markers in cardiac tissue. CONCLUSIONS: In this work, we provide evidence of superior anti-fibrotic properties of EV-H5 over EV-N or EV-H3. Our study uncovers that fine regulation of oxygen concentration in the cellular environment may enhance the anti-fibrotic effects of hiPS-EVs, which has great potential to be applied for heart regeneration.


Asunto(s)
Vesículas Extracelulares , Células Madre Pluripotentes Inducidas , MicroARNs , Animales , Humanos , Ratones , Modelos Animales de Enfermedad , Vesículas Extracelulares/metabolismo , Fibrosis , Hipoxia , Células Madre Pluripotentes Inducidas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Oxígeno , Proteína Smad2/genética , Proteína Smad2/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
6.
Stem Cell Rev Rep ; 19(8): 2756-2773, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37700183

RESUMEN

RATIONALE: Emerging evidence indicates that stem cell (SC)- derived extracellular vesicles (EVs) carrying bioactive miRNAs are able to repair damaged or infarcted myocardium and ameliorate adverse remodeling. Fibroblasts represent a major cell population responsible for scar formation in the damaged heart. However, the effects of EVs on cardiac fibroblast (CFs) biology and function has not been investigated. OBJECTIVE: To analyze the biological impact of stem cell-derived EVs (SC-EVs) enriched in miR-1 and miR-199a on CFs and to elucidate the underlying molecular mechanisms. METHODS AND RESULTS: Genetically engineered human induced pluripotent stem cells (hiPS) and umbilical cord-derived mesenchymal stem cells (UC-MSCs) expressing miR-1 or miR-199a were used to produce miR-EVs. Cells and EVs were thoughtfully analyzed for miRNA expression using RT-qPCR method. Both hiPS-miRs-EVs and UC-MSC-miRs-EVs effectively transferred miRNAs to recipient CFs, however, hiPS-miRs-EVs triggered cardiomyogenic gene expression in CFs more efficiently than UC-MSC-miRs-EVs. Importantly, hiPS-miR-1-EVs exhibited cytoprotective effects on CFs by reducing apoptosis, decreasing levels of pro-inflammatory cytokines (CCL2, IL-1ß, IL-8) and downregulating the expression of a pro-fibrotic gene - α-smooth muscle actin (α-SMA). Notably, we identified a novel role of miR-199a-3p delivered by hiPS-EVs to CFs, in triggering the expression of cardiomyogenic genes (NKX2.5, TNTC, MEF2C) and ion channels involved in cardiomyocyte contractility (HCN2, SCN5A, KCNJ2, KCND3). By targeting SERPINE2, miR-199a-3p may reduce pro-fibrotic properties of CFs, whereas miR-199a-5p targeted BCAM and TSPAN6, which may be implicated in downregulation of inflammation. CONCLUSIONS: hiPS-EVs carrying miR-1 and miR-199a attenuate apoptosis and pro-fibrotic and pro-inflammatory activities of CFs, and increase cardiomyogenic gene expression. These finding serve as rationale for targeting fibroblasts with novel EV-based miRNA therapies to improve heart repair after myocardial injury.


Asunto(s)
Vesículas Extracelulares , Células Madre Pluripotentes Inducidas , MicroARNs , Humanos , Serpina E2 , MicroARNs/genética , Antiinflamatorios , Vesículas Extracelulares/genética , Fibroblastos , Tetraspaninas
8.
Int J Mol Sci ; 22(23)2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34884593

RESUMEN

Subepithelial fibrosis is a component of the remodeling observed in the bronchial wall of patients diagnosed with asthma. In this process, human bronchial fibroblasts (HBFs) drive the fibroblast-to-myofibroblast transition (FMT) in response to transforming growth factor-ß1 (TGF-ß1), which activates the canonical Smad-dependent signaling. However, the pleiotropic properties of TGF-ß1 also promote the activation of non-canonical signaling pathways which can affect the FMT. In this study we investigated the effect of p38 mitogen-activated protein kinase (MAPK) inhibition by SB203580 on the FMT potential of HBFs derived from asthmatic patients using immunocytofluorescence, real-time PCR and Western blotting methods. Our results demonstrate for the first time the strong effect of p38 MAPK inhibition on the TGF-ß1-induced FMT potential throughout the strong attenuation of myofibroblast-related markers: α-smooth muscle actin (α-SMA), collagen I, fibronectin and connexin 43 in HBFs. We suggest the pleiotropic mechanism of SB203580 on FMT impairment in HBF populations by the diminishing of TGF-ß/Smad signaling activation and disturbances in the actin cytoskeleton architecture along with the maturation of focal adhesion sites. These observations justify future research on the role of p38 kinase in FMT efficiency and bronchial wall remodeling in asthma.


Asunto(s)
Asma/tratamiento farmacológico , Bronquios/efectos de los fármacos , Diferenciación Celular , Inhibidores Enzimáticos/farmacología , Fibroblastos/efectos de los fármacos , Imidazoles/farmacología , Piridinas/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Adulto , Asma/enzimología , Asma/patología , Bronquios/enzimología , Células Cultivadas , Femenino , Fibroblastos/enzimología , Humanos , Masculino , Persona de Mediana Edad , Transducción de Señal
9.
J Pers Med ; 11(9)2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34575682

RESUMEN

Human-induced pluripotent stem cells (hiPSCs) offer numerous possibilities in science and medicine, particularly when combined with precise genome editing methods. hiPSCs are artificially generated equivalents of human embryonic stem cells (hESCs), which possess an unlimited ability to self-renew and the potential to differentiate into any cell type of the human body. Importantly, generating patient-specific hiPSCs enables personalized drug testing or autologous cell therapy upon differentiation into a desired cell line. However, to ensure the highest standard of hiPSC-based biomedical products, their safety and reliability need to be proved. One of the key factors influencing human pluripotent stem cell (hPSC) characteristics and function is oxygen concentration in their microenvironment. In recent years, emerging data have pointed toward the beneficial effect of low oxygen pressure (hypoxia) on both hiPSCs and hESCs. In this review, we examine the state-of-the-art research on the oxygen impact on hiPSC functions and activity with an emphasis on their niche, metabolic state, reprogramming efficiency, and differentiation potential. We also discuss the similarities and differences between PSCs and cancer stem cells (CSCs) with respect to the role of oxygen in both cell types.

10.
Leukemia ; 35(10): 2964-2977, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34140648

RESUMEN

Cord blood (CB) represents a source of hematopoietic stem and progenitor cells (CB-HSPCs) for bone marrow (BM) reconstitution, but clinical CB application is limited in adult patients due to the insufficient number of CB-HSCPCs and the lack of effective ex vivo approaches to increase CB-HSPC functionality. Since human-induced pluripotent stem cells (hiPSCs) have been indicated as donor cells for bioactive extracellular vesicles (EVs) modulating properties of other cells, we are the first to employ hiPSC-derived EVs (hiPSC-EVs) to enhance the hematopoietic potential of CB-derived CD45dimLin-CD34+ cell fraction enriched in CB-HSPCs. We demonstrated that hiPSC-EVs improved functional properties of CB-HSPCs critical for their hematopoietic capacity including metabolic, hematopoietic and clonogenic potential as well as survival, chemotactic response to stromal cell-derived factor 1 and adhesion to the model components of hematopoietic niche in vitro. Moreover, hiPSC-EVs enhanced homing and engraftment of CB-HSPCs in vivo. This phenomenon might be related to activation of signaling pathways in CB-HSPCs following hiPSC-EV treatment, as shown on both gene expression and the protein kinases activity levels. In conclusion, hiPSC-EVs might be used as ex vivo modulators of CB-HSPCs capacity to enhance their functional properties and augment future practical applications of CB-derived cells in BM reconstitution.


Asunto(s)
Trasplante de Células Madre de Sangre del Cordón Umbilical/métodos , Vesículas Extracelulares/trasplante , Sangre Fetal/citología , Hematopoyesis , Trasplante de Células Madre Hematopoyéticas/métodos , Células Madre Hematopoyéticas/fisiología , Células Madre Pluripotentes Inducidas/fisiología , Animales , Antígenos CD34/metabolismo , Células Madre Hematopoyéticas/citología , Humanos , Células Madre Pluripotentes Inducidas/citología , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID
11.
Biochem Genet ; 59(1): 62-82, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32767051

RESUMEN

Development of efficient vectors for transfection is one of the major challenges in genetic engineering. Previous research demonstrated that cationic derivatives of polyisoprenoids (PTAI) may serve as carriers of nucleic acids. In the present study, the effectiveness of two PTAI-based formulations (PTAI-6-8 and 10-14) was investigated and compared to the commercial reagents. The purpose of applied gene therapy was to enhance the expression of vascular endothelial growth factor (VEGF-A) in the renal medulla of spontaneously hypertensive rats (SHR) and to test its potential as a novel antihypertensive intervention. In the first part of the study (in vitro), we confirmed that PTAI-based lipoplexes efficiently transfect XC rat sarcoma cells and are stable in 37 °C for 7 days. In the in vivo experiments, we administered selected lipoplexes directly to the kidneys of conscious SHR (via osmotic pumps). There were no blood pressure changes and VEGF-A level in renal medulla was significantly higher only for PTAI-10-14-based formulation. In conclusion, despite the promising results, we were not able to achieve VEGF-A expression level high enough to verify VEGF-A gene therapy usefulness in SHR. However, results of our study give important indications for the future development of PTAI-based DNA carriers and kidney-targeted gene delivery.


Asunto(s)
Presión Sanguínea/genética , Terapia Genética/instrumentación , Vectores Genéticos , Hipertensión/terapia , Médula Renal/metabolismo , Poliprenoles/química , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Línea Celular Tumoral , ADN/genética , Glucosa/metabolismo , Hipertensión/genética , Masculino , Ósmosis , Ratas , Ratas Endogámicas SHR , Transfección
12.
Bioengineering (Basel) ; 7(3)2020 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-32630660

RESUMEN

Fibrosis of burn-related wounds remains an unresolved clinical issue that leads to patient disability. The aim of this study was to assess the efficacy of the transplantation of adipose-derived stromal cells seeded onto a collagen-based matrix in the reconstruction of burn-related scars. Here, we characterized an in vitro interaction between adipose-derived stromal cells and a collagen-based matrix, Integra®DRT. Our results show that transcription of pro-angiogenic, remodeling, and immunomodulatory factors was more significant in adipose-derived stromal cells than in fibroblasts. Transcription of metalloproteinases 2 and 9 is positively correlated with the collagenolytic activity of the adipose-derived stromal cells seeded onto Integra®DRT. The increase in the enzymatic activity corresponds to the decrease in the elasticity of the whole construct. Finally, we validated the treatment of a post-excision wound using adipose-derived stromal cells and an Integra®DRT construct in a 25-year-old woman suffering from burn-related scars. Scarless healing was observed in the area treated by adipose-derived stromal cells and the Integra®DRT construct but not in the reference area where Integra®DRT was applied without cells. This clinical observation may be explained by in vitro findings: Enhanced transcription of the vascular endothelial growth factor as well as remodeling of the collagen-based matrix decreased mechanical stress. Our experimental treatment demonstrated that the adipose-derived stromal cells seeded onto Integra®DRT exhibit valuable properties that may improve post-excision wound healing and facilitate skin regeneration without scars.

13.
Food Res Int ; 125: 108563, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31554073

RESUMEN

The properties of durian fruit at five stages of ripeness were evaluated and compared. The physicochemical parameters such as titratable acidity (TA) and total soluble solids (TSS) increased, whereas the pH slightly decreased during the ripening process. The highest contents of polyphenols, flavonoids, flavanols, tannins, vitamin C and the antioxidant capacities, measured by radical scavenging assays, were found in ripe and overripe fruits. The structural properties of extracted polyphenols were evaluated by Fourier transform infrared spectroscopy (FTIR) and fluorescence spectroscopy. The interaction of polyphenols with the main drug carrier in blood human serum albumin (HSA) showed decrease in its fluorescence intensity. The binding properties of polyphenols were in direct correlation with the antioxidant capacities of the investigated fruits. HepG2 cells evaluated cytotoxic effect and the mechanism of cell death after treatment with durian. The metabolism of carbohydrates was examined on the expression of glycolysis-related genes (hexokinase 2 (HK2); 6-phosphofructo-2-kinase 4 (PFKFB4); facilitated glucose transporter member 1 (SLC2A1 (Glut1)) and lactate dehydrogenase A and utilization of glucose in the hepatocytes with durian treatment. Durian in immature stage had stronger cytotoxic effect and weak proapoptotic potential on HepG2 cells than the mature and overripe ones. The ripe and overripe fruits increased the expression of hepatic HK2 and PFKFB4 glycolytic genes and stimulated glucose utilization in HepG2 cells. The present results indicate that durians reveal different biological activity and may provide their broad and extensive use as medicinal or functional foods.


Asunto(s)
Antioxidantes/metabolismo , Bombacaceae/genética , Bombacaceae/metabolismo , Frutas/metabolismo , Expresión Génica/genética , Glucólisis/genética , Apoptosis/genética , Frutas/genética , Células Hep G2 , Humanos , Espectrometría de Fluorescencia , Espectroscopía Infrarroja por Transformada de Fourier
15.
J Extracell Vesicles ; 7(1): 1535750, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30637094

RESUMEN

The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles ("MISEV") guidelines for the field in 2014. We now update these "MISEV2014" guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points.

16.
Circ Res ; 122(2): 296-309, 2018 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-29118058

RESUMEN

RATIONALE: Extracellular vesicles (EVs) are tiny membrane-enclosed droplets released by cells through membrane budding or exocytosis. The myocardial reparative abilities of EVs derived from induced pluripotent stem cells (iPSCs) have not been directly compared with the source iPSCs. OBJECTIVE: To examine whether iPSC-derived EVs can influence the biological functions of cardiac cells in vitro and to compare the safety and efficacy of iPSC-derived EVs (iPSC-EVs) and iPSCs for cardiac repair in vivo. METHODS AND RESULTS: Murine iPSCs were generated, and EVs isolated from culture supernatants by sequential centrifugation. Atomic force microscopy, high-resolution flow cytometry, real-time quantitative RT-PCR, and mass spectrometry were used to characterize EV morphology and contents. iPSC-EVs were enriched in miRNAs and proteins with proangiogenic and cytoprotective properties. iPSC-EVs enhanced angiogenic, migratory, and antiapoptotic properties of murine cardiac endothelial cells in vitro. To compare the cardiac reparative capacities in vivo, vehicle, iPSCs, and iPSC-EVs were injected intramyocardially at 48 hours after a reperfused myocardial infarction in mice. Compared with vehicle-injected mice, both iPSC- and iPSC-EV-treated mice exhibited improved left ventricular function at 35 d after myocardial infarction, albeit iPSC-EVs rendered greater improvement. iPSC-EV injection also resulted in reduction in left ventricular mass and superior perfusion in the infarct zone. Both iPSCs and iPSC-EVs preserved viable myocardium in the infarct zone, whereas reduction in apoptosis was significant with iPSC-EVs. iPSC injection resulted in teratoma formation, whereas iPSC-EV injection was safe. CONCLUSIONS: iPSC-derived EVs impart cytoprotective properties to cardiac cells in vitro and induce superior cardiac repair in vivo with regard to left ventricular function, vascularization, and amelioration of apoptosis and hypertrophy. Because of their acellular nature, iPSC-EVs represent a safer alternative for potential therapeutic applications in patients with ischemic myocardial damage.


Asunto(s)
Vesículas Extracelulares/fisiología , Vesículas Extracelulares/trasplante , Células Madre Pluripotentes Inducidas/fisiología , Células Madre Pluripotentes Inducidas/trasplante , Daño por Reperfusión Miocárdica/terapia , Animales , Movimiento Celular/fisiología , Supervivencia Celular/fisiología , Células Cultivadas , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/terapia , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/fisiología , Miocitos Cardíacos/trasplante , Resultado del Tratamiento
17.
Mater Sci Eng C Mater Biol Appl ; 77: 521-533, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28532062

RESUMEN

Recent approaches in tissue regeneration focus on combining innovative achievements of stem cell biology and biomaterial sciences to develop novel therapeutic strategies for patients. Growing recent evidence indicates that mesenchymal stem cells harvested from human umbilical cord Wharton's jelly (hUC-MSCs) are a new valuable source of cells for autologous as well as allogeneic therapies in humans. hUC-MSCs are multipotent, highly proliferating cells with prominent immunoregulatory activity. In this study, we evaluated the impact of widely used FDA approved poly(α-esters) including polylactide (PLA) and polycaprolactone (PCL) on selected biological properties of hUC-MSCs in vitro. We found that both polymers can be used as non-toxic substrates for ex vivo propagation of hUC-MSCs as shown by no major impact on cell proliferation or viability. Moreover, PCL significantly enhanced the migratory capacity of hUC-MSCs. Importantly, genetic analysis indicated that both polymers promoted the angiogenic differentiation potential of hUC-MSCs with no additional chemical stimulation. These results indicate that PLA and PCL enhance selected biological properties of hUC-MSCs essential for their regenerative capacity including migratory and proangiogenic potential, which are required for effective vascular repair in vivo. Thus, PLA and PCL-based scaffolds combined with hUC-MSCs may be potentially employed as future novel grafts in tissue regeneration such as blood vessel reconstruction.


Asunto(s)
Células Madre Mesenquimatosas , Diferenciación Celular , Células Cultivadas , Humanos , Trasplante de Células Madre Mesenquimatosas , Poliésteres , Cordón Umbilical
18.
J Mol Med (Berl) ; 95(2): 205-220, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27638341

RESUMEN

Growing evidence indicates that intracellular signaling mediated by extracellular vesicles (EVs) released by stem cells plays a considerable role in triggering the regenerative program upon transplantation. EVs from umbilical cord mesenchymal stem cells (UC-MSC-EVs) have been shown to enhance tissue repair in animal models. However, translating such results into clinical practice requires optimized EV collection procedures devoid of animal-originating agents. Thus, in this study, we analyzed the influence of xeno-free expansion media on biological properties of UC-MSCs and UC-MSC-EVs for future applications in cardiac repair in humans. Our results show that proliferation, differentiation, phenotype stability, and cytokine secretion by UC-MSCs vary depending on the type of xeno-free media. Importantly, we found distinct molecular and functional properties of xeno-free UC-MSC-EVs including enhanced cardiomyogenic and angiogenic potential impacting on target cells, which may be explained by elevated concentration of several pro-cardiogenic and pro-angiogenic microRNA (miRNAs) present in the EVs. Our data also suggest predominantly low immunogenic capacity of certain xeno-free UC-MSC-EVs reflected by their inhibitory effect on proliferation of immune cells in vitro. Summarizing, conscious selection of cell culture conditions is required to harvest UC-MSC-EVs with the optimal desired properties including enhanced cardiac and angiogenic capacity, suitable for tissue regeneration. KEY MESSAGE: Type of xeno-free media influences biological properties of UC-MSCs in vitro. Certain xeno-free media promote proliferation and differentiation ability of UC-MSCs. EVs collected from xeno-free cultures of UC-MSCs are biologically active. Xeno-free UC-MSC-EVs enhance cardiac and angiogenic potential of target cells. Type of xeno-free media determines immunomodulatory effects mediated by UC-MSC-EVs.


Asunto(s)
Medio de Cultivo Libre de Suero/farmacología , Vesículas Extracelulares/efectos de los fármacos , Corazón/fisiología , Células Madre Mesenquimatosas/efectos de los fármacos , Neovascularización Fisiológica/efectos de los fármacos , Regeneración , Cordón Umbilical/citología , Adenosina Trifosfato/metabolismo , Animales , Técnicas de Cultivo de Célula , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Medio de Cultivo Libre de Suero/química , Citocinas/metabolismo , Vesículas Extracelulares/fisiología , Humanos , Células Madre Mesenquimatosas/fisiología , MicroARNs/genética
19.
Stem Cells Int ; 2016: 5069857, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26633976

RESUMEN

Very small embryonic-like stem cells (VSELs) represent a unique rare population of adult stem cells (SCs) sharing several structural, genetic, biochemical, and functional properties with embryonic SCs and have been identified in several adult murine and human tissues. However, rat bone marrow- (BM-) derived SCs closely resembling murine or human VSELs have not been described. Thus, we employed multi-instrumental flow cytometric approach including classical and imaging cytometry and we established that newly identified population of nonhematopoietic cells expressing CD106 (VCAM-I) antigen contains SCs with very small size, expressing markers of pluripotency (Oct-4A and Nanog) on both mRNA and protein levels that indicate VSEL population. Based on our experience in both murine and human VSEL isolation procedures by fluorescence-activated cell sorting (FACS), we also optimized sorting protocol for separation of CD45(-)/Lin(-)/CD106(+) rat BM-derived VSELs from wild type and eGFP-expressing rats, which are often used as donor animals for cell transplantations in regenerative studies in vivo. Thus, this is a first study identifying multiantigenic phenotype and providing sorting protocols for isolation VSELs from rat BM tissue for further examining of their functional properties in vitro as well as regenerative capacity in distinct in vivo rat models of tissue injury.

20.
Stem Cell Reports ; 5(5): 918-931, 2015 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-26455413

RESUMEN

Tools for rapid and efficient transgenesis in "safe harbor" loci in an isogenic context remain important to exploit the possibilities of human pluripotent stem cells (hPSCs). We created hPSC master cell lines suitable for FLPe recombinase-mediated cassette exchange (RMCE) in the AAVS1 locus that allow generation of transgenic lines within 15 days with 100% efficiency and without random integrations. Using RMCE, we successfully incorporated several transgenes useful for lineage identification, cell toxicity studies, and gene overexpression to study the hepatocyte lineage. However, we observed unexpected and variable transgene expression inhibition in vitro, due to DNA methylation and other unknown mechanisms, both in undifferentiated hESC and differentiating hepatocytes. Therefore, the AAVS1 locus cannot be considered a universally safe harbor locus for reliable transgene expression in vitro, and using it for transgenesis in hPSC will require careful assessment of the function of individual transgenes.


Asunto(s)
Células Madre Embrionarias/metabolismo , Marcación de Gen/métodos , Hepatocitos/citología , Células Madre Pluripotentes Inducidas/metabolismo , Recombinasas/metabolismo , Transgenes , Células Cultivadas , Metilación de ADN , Dependovirus/genética , Células Madre Embrionarias/citología , Silenciador del Gen , Sitios Genéticos , Hepatocitos/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Recombinasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...