Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Mol Cell Cardiol ; 150: 91-100, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33127387

RESUMEN

BACKGROUND: Myocardial fibrosis is a hallmark of the failing heart, contributing to the most common causes of deaths worldwide. Several microRNAs (miRNAs, miRs) controlling cardiac fibrosis were identified in recent years; however, a more global approach to identify miRNAs involved in fibrosis is missing. METHODS AND RESULTS: Functional miRNA mimic library screens were applied in human cardiac fibroblasts (HCFs) to identify annotated miRNAs inducing proliferation. In parallel, miRNA deep sequencing was performed after subjecting HCFs to proliferating and resting stimuli, additionally enabling discovery of novel miRNAs. In-depth in vitro analysis confirmed the pro-fibrotic nature of selected, highly conserved miRNAs miR-20a-5p and miR-132-3p. To determine downstream cellular pathways and their role in the fibrotic response, targets of the annotated miRNA candidates were modulated by synthetic siRNA. We here provide evidence that repression of autophagy and detoxification of reactive oxygen species by miR-20a-5p and miR-132-3p explain some of their pro-fibrotic nature on a mechanistic level. CONCLUSION: We here identified both miR-20a-5p and miR-132-3p as crucial regulators of fibrotic pathways in an in vitro model of human cardiac fibroblast biology.


Asunto(s)
Fibroblastos/metabolismo , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , MicroARNs/genética , Miocardio/citología , Análisis de Secuencia de ARN , Autofagia/genética , Proteína 7 Relacionada con la Autofagia/metabolismo , Secuencia de Bases , Fibrosis , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Regulación de la Expresión Génica , Humanos , Inactivación Metabólica/genética , MicroARNs/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Superóxido Dismutasa/metabolismo
2.
Circulation ; 141(9): 751-767, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-31948273

RESUMEN

BACKGROUND: Myocardial fibrosis is a hallmark of cardiac remodeling and functionally involved in heart failure development, a leading cause of deaths worldwide. Clinically, no therapeutic strategy is available that specifically attenuates maladaptive responses of cardiac fibroblasts, the effector cells of fibrosis in the heart. Therefore, our aim was to develop novel antifibrotic therapeutics based on naturally derived substance library screens for the treatment of cardiac fibrosis. METHODS: Antifibrotic drug candidates were identified by functional screening of 480 chemically diverse natural compounds in primary human cardiac fibroblasts, subsequent validation, and mechanistic in vitro and in vivo studies. Hits were analyzed for dose-dependent inhibition of proliferation of human cardiac fibroblasts, modulation of apoptosis, and extracellular matrix expression. In vitro findings were confirmed in vivo with an angiotensin II-mediated murine model of cardiac fibrosis in both preventive and therapeutic settings, as well as in the Dahl salt-sensitive rat model. To investigate the mechanism underlying the antifibrotic potential of the lead compounds, treatment-dependent changes in the noncoding RNAome in primary human cardiac fibroblasts were analyzed by RNA deep sequencing. RESULTS: High-throughput natural compound library screening identified 15 substances with antiproliferative effects in human cardiac fibroblasts. Using multiple in vitro fibrosis assays and stringent selection algorithms, we identified the steroid bufalin (from Chinese toad venom) and the alkaloid lycorine (from Amaryllidaceae species) to be effective antifibrotic molecules both in vitro and in vivo, leading to improvement in diastolic function in 2 hypertension-dependent rodent models of cardiac fibrosis. Administration at effective doses did not change plasma damage markers or the morphology of kidney and liver, providing the first toxicological safety data. Using next-generation sequencing, we identified the conserved microRNA 671-5p and downstream the antifibrotic selenoprotein P1 as common effectors of the antifibrotic compounds. CONCLUSIONS: We identified the molecules bufalin and lycorine as drug candidates for therapeutic applications in cardiac fibrosis and diastolic dysfunction.


Asunto(s)
Alcaloides de Amaryllidaceae/farmacología , Bufanólidos/farmacología , Cardiomiopatías/prevención & control , Fármacos Cardiovasculares/farmacología , Fibroblastos/efectos de los fármacos , Fenantridinas/farmacología , Animales , Apoptosis/efectos de los fármacos , Cardiomiopatías/etiología , Cardiomiopatías/metabolismo , Cardiomiopatías/fisiopatología , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Diástole , Modelos Animales de Enfermedad , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Fibroblastos/metabolismo , Fibroblastos/patología , Fibrosis , Ensayos Analíticos de Alto Rendimiento , Humanos , Hipertensión/complicaciones , Hipertensión/fisiopatología , Masculino , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , Miocardio/metabolismo , Miocardio/patología , Ratas Endogámicas Dahl , Selenoproteína P/genética , Selenoproteína P/metabolismo , Función Ventricular Izquierda/efectos de los fármacos
3.
Angew Chem Int Ed Engl ; 56(43): 13244-13248, 2017 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-28817225

RESUMEN

Palladium ate complexes are frequently invoked as important intermediates in Heck and cross-coupling reactions, but so far have largely eluded characterization at the molecular level. Here, we use electrospray-ionization mass spectrometry, electrical conductivity measurements, and NMR spectroscopy to show that the electron-poor catalyst [L3 Pd] (L=tris[3,5-bis(trifluoromethyl)phenyl]phosphine) readily reacts with Br- ions to afford the anionic, zero-valent ate complex [L3 PdBr]- . In contrast, more-electron-rich Pd catalysts display lower tendencies toward the formation of ate complexes. Combining [L3 Pd] with LiI and an aryl iodide substrate (ArI) results in the observation of the PdII ate complex [L2 Pd(Ar)I2 ]- .

4.
Int J Psychiatry Clin Pract ; 19(3): 188-91, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25761139

RESUMEN

BACKGROUND: The "Onset of Depression Inventory" (ODI) represents a patient interview which aims to register the speed of onset of depression systematically. The purpose of this study was to evaluate the patient-relative agreement regarding the speed of onset of depression in the patients. METHODS: The ODI was investigated in 31 patients with a depressive episode. Moreover, 31 patients' relatives participated in an interview for which a modified version of the ODI (for relatives of depressed patients; ODI-A) was applied. RESULTS: There was a significant association between patients' estimation of the speed of onset of the depressive episode and relatives' estimation of this parameter in the case of patients and relatives living in a common household (rho = 0.68; p = 0.006). CONCLUSIONS: There was an agreement between patients and their relatives regarding the speed of onset of the current depressive episodes, however only if they lived in a common household.


Asunto(s)
Trastorno Depresivo/diagnóstico , Inventario de Personalidad , Índice de Severidad de la Enfermedad , Adulto , Anciano , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Factores de Tiempo
5.
Chemistry ; 21(14): 5548-60, 2015 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-25709062

RESUMEN

Pd-mediated Negishi cross-coupling reactions were studied by a combination of kinetic measurements, electrospray-ionization (ESI) mass spectrometry, (31)P NMR and UV/Vis spectroscopy. The kinetic measurements point to a rate-determining oxidative addition. Surprisingly, this step seems to involve not only the Pd catalyst and the aryl halide substrate, but also the organozinc reagent. In this context, the ESI-mass spectrometric observation of heterobimetallic Pd-Zn complexes [L2 PdZnR](+) (L=S-PHOS, R=Bu, Ph, Bn) is particularly revealing. The inferred presence of these and related neutral complexes with a direct Pd-Zn interaction in solution explains how the organozinc reagent can modulate the reactivity of the Pd catalyst. Previous theoretical calculations by González-Pérez et al. (Organometallics- 2012, 31, 2053) suggest that the complexation by the organozinc reagent lowers the activity of the Pd catalyst. Presumably, a similar effect also causes the rate decrease observed upon addition of ZnBr2 . In contrast, added LiBr apparently counteracts the formation of Pd-Zn complexes and restores the high activity of the Pd catalyst. At longer reaction times, deactivation processes due to degradation of the S-PHOS ligand and aggregation of the Pd catalyst come into play, thus further contributing to the appreciable complexity of the title reaction.

6.
J Biol Inorg Chem ; 15(5): 737-48, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20221888

RESUMEN

The ruthenium compound KP1019 has demonstrated promising anticancer activity in a pilot clinical trial. This study aims to evaluate the intracellular uptake/binding patterns of KP1019 and its sodium salt KP1339, which is currently in a phase I-IIa study. Although KP1339 tended to be moderately less cytotoxic than KP1019, IC(50) values in several cancer cell models revealed significant correlation of the cytotoxicity profiles, suggesting similar targets for the two drugs. Accordingly, both drugs activated apoptosis, indicated by caspase activation via comparable pathways. Drug uptake determined by inductively coupled plasma mass spectrometry (ICP-MS) was completed after 1 h, corresponding to full cytotoxicity as early as after 3 h of drug exposure. Surprisingly, the total cellular drug uptake did not correlate with cytotoxicity. However, distinct differences in intracellular distribution patterns suggested that the major targets for the two ruthenium drugs are cytosolic rather than nuclear. Consequently, drug-protein binding in cytosolic fractions of drug-treated cells was analyzed by native size-exclusion chromatography (SEC) coupled online with ICP-MS. Ruthenium-protein binding of KP1019- and KP1339-treated cells distinctly differed from the platinum binding pattern observed after cisplatin treatment. An adapted SEC-SEC-ICP-MS system identified large protein complexes/aggregates above 700 kDa as initial major binding partners in the cytosol, followed by ruthenium redistribution to the soluble protein weight fraction below 40 kDa. Taken together, our data indicate that KP1019 and KP1339 rapidly enter tumor cells, followed by binding to larger protein complexes/organelles. The different protein binding patterns as compared with those for cisplatin suggest specific protein targets and consequently a unique mode of action for the ruthenium drugs investigated.


Asunto(s)
Antineoplásicos/metabolismo , Indazoles/metabolismo , Compuestos Organometálicos/metabolismo , Proteínas/metabolismo , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Sitios de Unión , Proliferación Celular/efectos de los fármacos , Citosol/química , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Indazoles/síntesis química , Indazoles/química , Indazoles/farmacología , Espectrometría de Masas , Peso Molecular , Compuestos Organometálicos/síntesis química , Compuestos Organometálicos/química , Compuestos Organometálicos/farmacología , Unión Proteica , Compuestos de Rutenio , Relación Estructura-Actividad , Factores de Tiempo , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...