Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Neuroinform ; 16: 851024, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35769832

RESUMEN

The meaning behind neural single unit activity has constantly been a challenge, so it will persist in the foreseeable future. As one of the most sourced strategies, detecting neural activity in high-resolution neural sensor recordings and then attributing them to their corresponding source neurons correctly, namely the process of spike sorting, has been prevailing so far. Support from ever-improving recording techniques and sophisticated algorithms for extracting worthwhile information and abundance in clustering procedures turned spike sorting into an indispensable tool in electrophysiological analysis. This review attempts to illustrate that in all stages of spike sorting algorithms, the past 5 years innovations' brought about concepts, results, and questions worth sharing with even the non-expert user community. By thoroughly inspecting latest innovations in the field of neural sensors, recording procedures, and various spike sorting strategies, a skeletonization of relevant knowledge lays here, with an initiative to get one step closer to the original objective: deciphering and building in the sense of neural transcript.

2.
Cells ; 10(3)2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33804543

RESUMEN

Temporal lobe epilepsy (TLE) is characterized by changes in interneuron numbers in the hippocampus. Deep brain stimulation (DBS) is an emerging tool to treat TLE seizures, although its mechanisms are not fully deciphered. We aimed to depict the effect of amygdala DBS on the density of the most common interneuron types in the CA1 hippocampal subfield in the lithium-pilocarpine model of epilepsy. Status epilepticus was induced in male Wistar rats. Eight weeks later, a stimulation electrode was implanted to the left basolateral amygdala of both pilocarpine-treated (Pilo, n = 14) and age-matched control rats (n = 12). Ten Pilo and 4 control animals received for 10 days 4 daily packages of 50 s 4 Hz regular stimulation trains. At the end of the stimulation period, interneurons were identified by immunolabeling for parvalbumin (PV), neuropeptide Y (NPY), and neuronal nitric oxide synthase (nNOS). Cell density was determined in the CA1 subfield of the hippocampus using confocal microscopy. We found that PV+ cell density was preserved in pilocarpine-treated rats, while the NPY+/nNOS+ cell density decreased significantly. The amygdala DBS did not significantly change the cell density in healthy or in epileptic animals. We conclude that DBS with low frequency applied for 10 days does not influence interneuron cell density changes in the hippocampus of epileptic rats.


Asunto(s)
Amígdala del Cerebelo/fisiopatología , Epilepsia/genética , Hipocampo/fisiopatología , Interneuronas/metabolismo , Pilocarpina/metabolismo , Animales , Masculino , Ratas , Ratas Wistar
3.
Brain Sci ; 10(11)2020 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-33202818

RESUMEN

Temporal-lobe epilepsy (TLE) is the most common type of drug-resistant epilepsy and warrants the development of new therapies, such as deep-brain stimulation (DBS). DBS was applied to different brain regions for patients with epilepsy; however, the mechanisms of action are not fully understood. Therefore, we tried to characterize the effect of amygdala DBS on hippocampal electrical activity in the lithium-pilocarpine model in male Wistar rats. After status epilepticus (SE) induction, seizure patterns were determined based on continuous video recordings. Recording electrodes were inserted in the left and right hippocampus and a stimulating electrode in the left basolateral amygdala of both Pilo and age-matched control rats 10 weeks after SE. Daily stimulation protocol consisted of 4 × 50 s stimulation trains (4-Hz, regular interpulse interval) for 10 days. The hippocampal electroencephalogram was analyzed offline: interictal epileptiform discharge (IED) frequency, spectral analysis, and phase-amplitude coupling (PAC) between delta band and higher frequencies were measured. We found that the seizure rate and duration decreased (by 23% and 26.5%) and the decrease in seizure rate correlated negatively with the IED frequency. PAC was elevated in epileptic animals and DBS reduced the pathologically increased PAC and increased the average theta power (25.9% ± 1.1 vs. 30.3% ± 1.1; p < 0.01). Increasing theta power and reducing the PAC could be two possible mechanisms by which DBS may exhibit its antiepileptic effect in TLE; moreover, they could be used to monitor effectiveness of stimulation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...