Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 80(1): 24, 2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36600084

RESUMEN

At the onset of Drosophila metamorphosis, plenty of secretory glue granules are released from salivary gland cells and the glue is deposited on the ventral side of the forming (pre)pupa to attach it to a dry surface. Prior to this, a poorly understood maturation process takes place during which secretory granules gradually grow via homotypic fusions, and their contents are reorganized. Here we show that the small GTPase Rab26 localizes to immature (smaller, non-acidic) glue granules and its presence prevents vesicle acidification. Rab26 mutation accelerates the maturation, acidification and release of these secretory vesicles as well as the lysosomal breakdown (crinophagy) of residual, non-released glue granules. Strikingly, loss of Mon1, an activator of the late endosomal and lysosomal fusion factor Rab7, results in Rab26 remaining associated even with the large glue granules and a concomitant defect in glue release, similar to the effects of Rab26 overexpression. Our data thus identify Rab26 as a key regulator of secretory vesicle maturation that promotes early steps (vesicle growth) and inhibits later steps (lysosomal transport, acidification, content reorganization, release, and breakdown), which is counteracted by Mon1.


Asunto(s)
Drosophila , Vesículas Secretoras , Proteínas de Unión al GTP rab , Animales , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Lisosomas/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Glándulas Salivales/metabolismo , Vesículas Secretoras/metabolismo
2.
Eur J Cell Biol ; 101(4): 151279, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36306596

RESUMEN

Bulk production and release of glue containing secretory granules takes place in the larval salivary gland during Drosophila development in order to attach the metamorphosing animal to a dry surface. These granules undergo a maturation process to prepare glue for exocytosis, which includes homotypic fusions to increase the size of granules, vesicle acidification and ion uptake. The steroid hormone 20-hydroxyecdysone is known to be required for the first and last steps of this process: glue synthesis and secretion, respectively. Here we show that the B1 isoform of Ecdysone receptor (EcR), together with its binding partner Ultraspiracle, are also necessary for the maturation of glue granules by promoting their acidification via regulation of Vha55 expression, which encodes an essential subunit of the V-ATPase proton pump. This is antagonized by the EcR-A isoform, overexpression of which decreases EcR-B1 and Vha55 expression and glue granule acidification. Our data shed light on a previously unknown, ecdysone receptor isoform-specific regulation of glue granule maturation.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Larva , Drosophila melanogaster/metabolismo , Regulación del Desarrollo de la Expresión Génica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Glándulas Salivales/metabolismo , Vesículas Secretoras/metabolismo
3.
FEBS J ; 288(1): 190-211, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32248620

RESUMEN

Warburg micro syndrome (WMS) is a hereditary autosomal neuromuscular disorder in humans caused by mutations in Rab18, Rab3GAP1, or Rab3GAP2 genes. Rab3GAP1/2 forms a heterodimeric complex, which acts as a guanosine nucleotide exchange factor and activates Rab18. Although the genetic causes of WMS are known, it is still unclear whether loss of the Rab3GAP-Rab18 module affects neuronal or muscle cell physiology or both, and how. In this work, we characterize a Rab3GAP2 mutant Drosophila line to establish a novel animal model for WMS. Similarly to symptoms of WMS, loss of Rab3GAP2 leads to highly decreased motility in Drosophila that becomes more serious with age. We demonstrate that these mutant flies are defective for autophagic degradation in multiple tissues including fat cells and muscles. Loss of Rab3GAP-Rab18 module members leads to perturbed autolysosome morphology due to destabilization of Rab7-positive autophagosomal and late endosomal compartments and perturbation of lysosomal biosynthetic transport. Importantly, overexpression of UVRAG or loss of Atg14, two alternative subunits of the Vps34/PI3K (vacuole protein sorting 34/phosphatidylinositol 3-kinase) complexes in fat cells, mimics the autophagic phenotype of Rab3GAP-Rab18 module loss. We find that GTP-bound Rab18 binds to Atg6/Beclin1, a permanent subunit of Vps34 complexes. Finally, we show that Rab3GAP2 and Rab18 are present on autophagosomal and autolysosomal membranes and colocalize with Vps34 Complex I subunits. Our data suggest that the Rab3GAP-Rab18 module regulates autolysosomal maturation through its interaction with the Vps34 Complex I, and perturbed autophagy due to loss of the Rab3GAP-Rab18 module may contribute to the development of WMS.


Asunto(s)
Anomalías Múltiples/genética , Catarata/congénito , Fosfatidilinositol 3-Quinasas Clase III/genética , Córnea/anomalías , Proteínas de Drosophila/genética , Hipogonadismo/genética , Discapacidad Intelectual/genética , Lisosomas/metabolismo , Microcefalia/genética , Atrofia Óptica/genética , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab3/genética , Anomalías Múltiples/metabolismo , Anomalías Múltiples/patología , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Adipocitos/metabolismo , Adipocitos/patología , Animales , Autofagia/genética , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Beclina-1/genética , Beclina-1/metabolismo , Catarata/genética , Catarata/metabolismo , Catarata/patología , Fosfatidilinositol 3-Quinasas Clase III/deficiencia , Córnea/metabolismo , Córnea/patología , Modelos Animales de Enfermedad , Proteínas de Drosophila/deficiencia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Regulación de la Expresión Génica , Humanos , Hipogonadismo/metabolismo , Hipogonadismo/patología , Discapacidad Intelectual/metabolismo , Discapacidad Intelectual/patología , Lisosomas/patología , Microcefalia/metabolismo , Microcefalia/patología , Músculos/metabolismo , Músculos/patología , Neuronas/metabolismo , Neuronas/patología , Atrofia Óptica/metabolismo , Atrofia Óptica/patología , Unión Proteica , Homología de Secuencia de Aminoácido , Transducción de Señal , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Proteínas de Unión al GTP rab/deficiencia , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab3/deficiencia , Proteínas de Unión a GTP rab7
4.
Biochim Biophys Acta Mol Cell Res ; 1866(4): 533-544, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30590083

RESUMEN

The small GTPase Arl8 is known to be involved in the periphery-directed motility of lysosomes. However, the overall importance of moving these vesicles is still poorly understood. Here we show that Drosophila Arl8 is required not only for the proper distribution of lysosomes, but also for autophagosome-lysosome fusion in starved fat cells, endosome-lysosome fusion in garland nephrocytes, and developmentally programmed secretory granule degradation (crinophagy) in salivary gland cells. Moreover, proper Arl8 localization to lysosomes depends on the shared subunits of the BLOC-1 and BORC complexes, which also promote autophagy and crinophagy. In conclusion, we demonstrate that Arl8 is responsible not only for positioning lysosomes but also acts as a general lysosomal fusion factor.


Asunto(s)
Factores de Ribosilacion-ADP/fisiología , Proteínas de Drosophila/fisiología , Lisosomas/fisiología , Factores de Ribosilacion-ADP/genética , Factores de Ribosilacion-ADP/metabolismo , Animales , Autofagosomas/fisiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Drosophila melanogaster/ultraestructura , Lisosomas/metabolismo , Lisosomas/ultraestructura , Fusión de Membrana , Subunidades de Proteína/fisiología , Proteínas de Unión al GTP rab/fisiología
5.
PLoS Genet ; 14(4): e1007359, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29694367

RESUMEN

The autophagosomal SNARE Syntaxin17 (Syx17) forms a complex with Snap29 and Vamp7/8 to promote autophagosome-lysosome fusion via multiple interactions with the tethering complex HOPS. Here we demonstrate that, unexpectedly, one more SNARE (Ykt6) is also required for autophagosome clearance in Drosophila. We find that loss of Ykt6 leads to large-scale accumulation of autophagosomes that are unable to fuse with lysosomes to form autolysosomes. Of note, loss of Syx5, the partner of Ykt6 in ER-Golgi trafficking does not prevent autolysosome formation, pointing to a more direct role of Ykt6 in fusion. Indeed, Ykt6 localizes to lysosomes and autolysosomes, and forms a SNARE complex with Syx17 and Snap29. Interestingly, Ykt6 can be outcompeted from this SNARE complex by Vamp7, and we demonstrate that overexpression of Vamp7 rescues the fusion defect of ykt6 loss of function cells. Finally, a point mutant form with an RQ amino acid change in the zero ionic layer of Ykt6 protein that is thought to be important for fusion-competent SNARE complex assembly retains normal autophagic activity and restores full viability in mutant animals, unlike palmitoylation or farnesylation site mutant Ykt6 forms. As Ykt6 and Vamp7 are both required for autophagosome-lysosome fusion and are mutually exclusive subunits in a Syx17-Snap29 complex, these data suggest that Vamp7 is directly involved in membrane fusion and Ykt6 acts as a non-conventional, regulatory SNARE in this process.


Asunto(s)
Autofagosomas/fisiología , Proteínas de Drosophila/fisiología , Lisosomas/fisiología , Fusión de Membrana/fisiología , Proteínas R-SNARE/fisiología , Animales , Animales Modificados Genéticamente , Sitios de Unión , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Fusión de Membrana/genética , Modelos Biológicos , Complejos Multiproteicos/genética , Complejos Multiproteicos/fisiología , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/fisiología , Proteínas R-SNARE/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/fisiología
6.
Small GTPases ; 9(6): 465-471, 2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-28005455

RESUMEN

During macroautophagy, the phagophore-mediated formation of autophagosomes and their subsequent fusion with lysosomes requires extensive transformation of the endomembrane system. Membrane dynamics in eukaryotic cells is regulated by small GTPase proteins including Arfs and Rabs. The small GTPase proteins that regulate autophagic membrane traffic are mostly conserved in yeast and metazoans, but there are also several differences. In this mini-review, we compare the small GTPase network of yeast and metazoan cells that regulates autophagy, and point out the similarities and differences in these organisms.


Asunto(s)
Autofagia , Membrana Celular/metabolismo , GTP Fosfohidrolasas/metabolismo , Levaduras/citología , Levaduras/enzimología , Animales , Transporte Biológico , Espacio Intracelular/metabolismo , Levaduras/metabolismo
7.
J Cell Biol ; 216(7): 1937-1947, 2017 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-28483915

RESUMEN

Rab7 promotes fusion of autophagosomes and late endosomes with lysosomes in yeast and metazoan cells, acting together with its effector, the tethering complex HOPS. Here we show that another small GTPase, Rab2, is also required for autophagosome and endosome maturation and proper lysosome function in Drosophila melanogaster We demonstrate that Rab2 binds to HOPS, and that its active, GTP-locked form associates with autolysosomes. Importantly, expression of active Rab2 promotes autolysosomal fusions unlike that of GTP-locked Rab7, suggesting that its amount is normally rate limiting. We also demonstrate that RAB2A is required for autophagosome clearance in human breast cancer cells. In conclusion, we identify Rab2 as a key factor for autophagic and endocytic cargo delivery to and degradation in lysosomes.


Asunto(s)
Autofagosomas/enzimología , Autofagia , Neoplasias de la Mama/enzimología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Endocitosis , Endosomas/enzimología , Lisosomas/enzimología , Proteína de Unión al GTP rab2/metabolismo , Animales , Animales Modificados Genéticamente , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Femenino , Humanos , Fusión de Membrana , Proteolisis , Interferencia de ARN , Transducción de Señal , Transfección , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo , Proteína de Unión al GTP rab2/genética , Proteínas de Unión a GTP rab7
8.
Mol Biol Cell ; 27(20): 3132-3142, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27559127

RESUMEN

The small GTPase Rab5 promotes recruitment of the Ccz1-Mon1 guanosine exchange complex to endosomes to activate Rab7, which facilitates endosome maturation and fusion with lysosomes. How these factors function during autophagy is incompletely understood. Here we show that autophagosomes accumulate due to impaired fusion with lysosomes upon loss of the Ccz1-Mon1-Rab7 module in starved Drosophila fat cells. In contrast, autophagosomes generated in Rab5-null mutant cells normally fuse with lysosomes during the starvation response. Consistent with that, Rab5 is dispensable for the Ccz1-Mon1-dependent recruitment of Rab7 to PI3P-positive autophagosomes, which are generated by the action of the Atg14-containing Vps34 PI3 kinase complex. Finally, we find that Rab5 is required for proper lysosomal function. Thus the Ccz1-Mon1-Rab7 module is required for autophagosome-lysosome fusion, whereas Rab5 loss interferes with a later step of autophagy: the breakdown of autophagic cargo within lysosomes.


Asunto(s)
Autofagia/fisiología , Animales , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Endosomas/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Lisosomas/metabolismo , Fagosomas/metabolismo , Transporte de Proteínas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab5/metabolismo , Proteínas de Unión a GTP rab7
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...