RESUMEN
OBJECTIVE: To describe neurologic, radiologic and laboratory features in children with central nervous system (CNS) inflammatory disease complicating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. STUDY DESIGN: We focused on CNS inflammatory diseases in children referred from 12 hospitals in the Paris area to Necker-Sick Children Reference Centre. RESULTS: We identified 19 children who had a history of SARS-CoV-2 infection and manifest a variety of CNS inflammatory diseases: encephalopathy, cerebellar ataxia, acute disseminated encephalomyelitis, neuromyelitis optica spectrum disorder, or optic neuritis. All patients had a history of SARS-CoV-2 exposure, and all tested positive for circulating antibodies against SARS-CoV-2. At the onset of the neurologic disease, SARS-CoV-2 PCR results (nasopharyngeal swabs) were positive in 8 children. Cerebrospinal fluid was abnormal in 58% (11/19) and magnetic resonance imaging was abnormal in 74% (14/19). We identified an autoantibody co-trigger in 4 children (myelin-oligodendrocyte and aquaporin 4 antibodies), representing 21% of the cases. No autoantibody was found in the 6 children whose CNS inflammation was accompanied by a multisystem inflammatory syndrome in children. Overall, 89% of patients (17/19) received anti-inflammatory treatment, primarily high-pulse methylprednisolone. All patients had a complete long-term recovery and, to date, no patient with autoantibodies presented with a relapse. CONCLUSIONS: SARS2-CoV-2 represents a new trigger of postinfectious CNS inflammatory diseases in children.
Asunto(s)
COVID-19 , Autoanticuerpos , COVID-19/complicaciones , Humanos , Glicoproteína Mielina-Oligodendrócito , Enfermedades Neuroinflamatorias , SARS-CoV-2 , Síndrome de Respuesta Inflamatoria SistémicaRESUMEN
AIMS: In this study, we will describe a comprehensive haemodynamic analysis and its relationship to the dilation of the aorta in transposition of the great artery (TGA) patients post-arterial switch operation (ASO) and controls using 4D-flow magnetic resonance imaging (MRI) data. METHODS AND RESULTS: Using 4D-flow MRI data of 14 TGA young patients and 8 age-matched normal controls obtained with 1.5 T GE-MR scanner, we evaluate 3D maps of 15 different haemodynamics parameters in six regions; three of them in the aortic root and three of them in the ascending aorta (anterior-left, -right, and posterior for both cases) to find its relationship with the aortic arch curvature and root dilation. Differences between controls and patients were evaluated using Mann-Whitney U test, and the relationship with the curvature was accessed by unpaired t-test. For statistical significance, we consider a P-value of 0.05. The aortic arch curvature was significantly different between patients 46.238 ± 5.581 m-1 and controls 41.066 ± 5.323 m-1. Haemodynamic parameters as wall shear stress circumferential (WSS-C), and eccentricity (ECC), were significantly different between TGA patients and controls in both the root and ascending aorta regions. The distribution of forces along the ascending aorta is highly inhomogeneous in TGA patients. We found that the backward velocity (B-VEL), WSS-C, velocity angle (VEL-A), regurgitation fraction (RF), and ECC are highly correlated with the aortic arch curvature and root dilatation. CONCLUSION: We have identified six potential biomarkers (B-VEL, WSS-C, VEL-A, RF, and ECC), which may be helpful for follow-up evaluation and early prediction of aortic root dilatation in this patient population.
Asunto(s)
Operación de Switch Arterial , Transposición de los Grandes Vasos , Aorta/diagnóstico por imagen , Aorta/cirugía , Aorta Torácica/diagnóstico por imagen , Aorta Torácica/patología , Aorta Torácica/cirugía , Hemodinámica , Humanos , Transposición de los Grandes Vasos/diagnóstico por imagen , Transposición de los Grandes Vasos/cirugíaRESUMEN
OBJECTIVE: To correlate fetal brain magnetic resonance imaging (MRI) findings with epilepsy characteristics and neurodevelopment at 2 years of age in children with tuberous sclerosis complex (TSC) to improve prenatal counseling. STUDY DESIGN: This retrospective cohort study was performed in a collaboration between centers of the EPISTOP consortium. We included children with definite TSC, fetal MRIs, and available follow-up data at 2 years of age. A pediatric neuroradiologist masked to the patient's clinical characteristics evaluated all fetal MRIs. MRIs were categorized for each of the 10 brain lobes as score 0: no (sub)cortical lesions or doubt; score 1: a single small lesion; score 2: more than one small lesion or at least one large lesion (>5 mm). Neurologic manifestations were correlated to lesion sum scores. RESULTS: Forty-one children were included. Median gestational age at MRI was 33.3 weeks; (sub)cortical lesions were detected in 97.6%. Mean lesion sum score was 4.5. At 2 years, 58.5% of patients had epilepsy and 22% had drug-resistant epilepsy. Cognitive, language, and motor development were delayed in 38%, 81%, and 50% of patients, respectively. Autism spectrum disorder (ASD) was diagnosed in 20.5%. Fetal MRI lesion sum scores were significantly associated with cognitive and motor development, and with ASD diagnosis, but not with epilepsy characteristics. CONCLUSIONS: Fetal cerebral lesion scores correlate with neurodevelopment and ASD at 2 years in children with TSC.
Asunto(s)
Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética , Trastornos del Neurodesarrollo/epidemiología , Esclerosis Tuberosa/epidemiología , Preescolar , Trastornos del Conocimiento/epidemiología , Estudios de Cohortes , Epilepsia/epidemiología , Femenino , Estudios de Seguimiento , Humanos , Lactante , Trastornos del Desarrollo del Lenguaje/epidemiología , Embarazo , Estudios RetrospectivosRESUMEN
BACKGROUND: The CNS manifestations of COVID-19 in children have primarily been described in case reports, which limit the ability to appreciate the full spectrum of the disease in paediatric patients. We aimed to identify enough cases that could be evaluated in aggregate to better understand the neuroimaging manifestations of COVID-19 in the paediatric population. METHODS: An international call for cases of children with encephalopathy related to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and abnormal neuroimaging findings was made. Clinical history and associated plasma and cerebrospinal fluid data were requested. These data were reviewed by a central neuroradiology panel, a child neurologist, and a paediatric infectious diseases expert. The children were categorised on the basis of their time of probable exposure to SARS-CoV-2. In addition, cases were excluded when a direct link to SARS-CoV-2 infection could not be established or an established alternate diagnostic cause could be hypothesised. The accepted referral centre imaging data, from ten countries, were remotely reviewed by a central panel of five paediatric neuroradiologists and a consensus opinion obtained on the imaging findings. FINDINGS: 38 children with neurological disease related to SARS-CoV-2 infection were identified from France (n=13), the UK (n=8), the USA (n=5), Brazil (n=4), Argentina (n=4), India (n=2), Peru (n=1), and Saudi Arabia (n=1). Recurring patterns of disease were identified, with neuroimaging abnormalities ranging from mild to severe. The most common imaging patterns were postinfectious immune-mediated acute disseminated encephalomyelitis-like changes of the brain (16 patients), myelitis (eight patients), and neural enhancement (13 patients). Cranial nerve enhancement could occur in the absence of corresponding neurological symptoms. Splenial lesions (seven patients) and myositis (four patients) were predominantly observed in children with multisystem inflammatory syndrome. Cerebrovascular complications in children were less common than in adults. Significant pre-existing conditions were absent and most children had favourable outcomes. However, fatal atypical CNS co-infections developed in four previously healthy children infected with SARS-CoV-2. INTERPRETATION: Acute-phase and delayed-phase SARS-CoV-2-related CNS abnormalities are seen in children. Recurring patterns of disease and atypical neuroimaging manifestations can be found and should be recognised being as potentially due to SARS-CoV-2 infection as an underlying aetiological factor. Studies of paediatric specific cohorts are needed to better understand the effects of SARS-CoV-2 infection on the CNS at presentation and on long-term follow-up in children. FUNDING: American Society of Pediatric Neuroradiology, University of Manchester (Manchester, UK). VIDEO ABSTRACT.
Asunto(s)
COVID-19/complicaciones , Enfermedades del Sistema Nervioso Central/diagnóstico por imagen , Enfermedades del Sistema Nervioso Central/etiología , Neuroimagen , Adolescente , Argentina/epidemiología , Encefalopatías/diagnóstico por imagen , Encefalopatías/fisiopatología , Brasil/epidemiología , COVID-19/fisiopatología , Niño , Preescolar , Coinfección/mortalidad , Encefalomielitis Aguda Diseminada/diagnóstico por imagen , Encefalomielitis Aguda Diseminada/fisiopatología , Femenino , Francia/epidemiología , Humanos , India/epidemiología , Lactante , Masculino , Perú/epidemiología , SARS-CoV-2/patogenicidad , Arabia Saudita/epidemiología , Síndrome de Respuesta Inflamatoria Sistémica/fisiopatología , Reino Unido/epidemiología , Estados Unidos/epidemiologíaRESUMEN
Autism is a neurodevelopmental disorder with a range of clinical presentations. These presentations vary from mild to severe and are referred to as autism spectrum disorders. The most common clinical sign of autism spectrum disorders is social interaction impairment, which is associated with verbal and non-verbal communication deficits and stereotyped and repetitive behaviors. Thanks to recent brain imaging studies, scientists are getting a better idea of the neural circuits involved in autism spectrum disorders. Indeed, functional brain imaging, such as positron emission tomography, single foton emission tomography and functional MRI have opened a new perspective to study normal and pathological brain functioning. Three independent studies have found anatomical and rest functional temporal lobe abnormalities in autistic patients. These alterations are localized in the superior temporal sulcus bilaterally, an area which is critical for perception of key social stimuli. In addition, functional studies have shown hypoactivation of most areas implicated in social perception (face and voice perception) and social cognition (theory of mind). These data suggest an abnormal functioning of the social brain network in autism. The understanding of the functional alterations of this important mechanism may drive the elaboration of new and more adequate social re-educative strategies for autistic patients.
Asunto(s)
Trastorno Autístico , Encéfalo/anomalías , Procesamiento de Imagen Asistido por Computador , Percepción Auditiva , Trastorno Autístico/diagnóstico por imagen , Trastorno Autístico/patología , Humanos , Relaciones Interpersonales , Imagen por Resonancia Magnética , Memoria , Tomografía de Emisión de Positrones , Radiografía , Percepción Social , Lóbulo Temporal/anomalías , Lóbulo Temporal/fisiopatología , Tomografía Computarizada de Emisión de Fotón ÚnicoRESUMEN
O autismo é um transtorno de neurodesenvolvimento com diversas apresentações clínicas. Essas apresentações variam em gravidade (leves a graves) e são denominadas transtornos do espectro do autismo. O sinal mais comum aos transtornos desse espectro é o déficit de interação social, que está associado a déficits de comunicação verbal e não-verbal e a comportamentos estereotipados e repetitivos. Graças a estudos recentes que utilizam métodos de imagem cerebral, os cientistas obtiveram uma idéia melhor dos circuitos neurais envolvidos nos transtornos do espectro do autismo. De fato, os exames de imagem cerebral funcionais, como tomografia por emissão de pósitrons, tomografia por emissão de fóton único e ressonância magnética funcional abriram uma nova perspectiva para o estudo do funcionamento cerebral normal e patológico. Três estudos independentes encontraram anormalidades da anatomia e do funcionamento em repouso do lobo temporal em pacientes autistas. Essas alterações estão localizadas bilateralmente nos sulcos temporais superiores. Essa região anatômica é de grande importância para a percepção de estímulos sociais essenciais. Além disso, estudos funcionais demonstraram hipoativação da maior parte das áreas envolvidas na percepção social (percepção de faces e voz) e cognição social (teoria da mente). Esses dados sugerem um funcionamento anormal da rede de pensamentos do cérebro social no autismo. A compreensão das alterações nesse importante mecanismo pode estimular a elaboração de novas e mais adequadas estratégias sociais de reeducação para pacientes autistas.