Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 208
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 160(14)2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38602293

RESUMEN

In nuclear magnetic resonance, long-lived coherences constitute a class of zero-quantum (ZQ) coherences that have lifetimes that can be longer than the relaxation lifetimes T2 of transverse magnetization. So far, such coherences have been observed in systems with two coupled spins with spin quantum numbers I = 1/2, where a term S0T0+T0S0 in the density operator corresponds to a coherent superposition between the singlet S0 and the central triplet T0 state. Here, we report on the excitation and detection of collective long-lived coherences in AA'MM'XX' spin systems in molecules containing a chain of at least three methylene (-CH2-) groups. Several variants of excitation by polychromatic spin-lock induced crossing (poly-SLIC) are introduced that can excite a non-uniform distribution of the amplitudes of terms such as S0S0T0S0S0T0, S0T0S0S0T0S0, and T0S0S0T0S0S0. Once the radio frequency fields are switched off, these are not eigenstates, leading to ZQ precession involving all six protons, a process that can be understood as a propagation of spin order along the chain of CH2 groups before the reconversion into observable magnetization by a second poly-SLIC pulse that can be applied to any one or several of the CH2 groups. In the resulting 2D spectra, the ω2 domain shows SQ spectra with the chemical shifts of the CH2 groups irradiated during the reconversion, while the ω1 dimension shows ZQ signals in absorption mode with linewidths on the order of 0.1 Hz that are not affected by the inhomogeneity of the static magnetic field but can be broadened by chemical exchange as occurs in drug screening. The ZQ frequencies are primarily determined by differences ΔJ between vicinal J-couplings.

2.
Magn Reson (Gott) ; 4(1): 47-56, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37904798

RESUMEN

Long-lived states (LLSs) have lifetimes TLLS that can be much longer than longitudinal relaxation times T1. In molecules containing several geminal pairs of protons in neighboring CH2 groups, it has been shown that delocalized LLSs can be excited by converting magnetization into imbalances between the populations of singlet and triplet states of each pair. Since the empirical yield of the conversion and reconversion of observable magnetization into LLSs and back is on the order of 10 % if one uses spin-lock induced crossing (SLIC), it would be desirable to boost the sensitivity by dissolution dynamic nuclear polarization (d-DNP). To enhance the magnetization of nuclear spins by d-DNP, the analytes must be mixed with radicals such as 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPOL). After dissolution, these radicals lead to an undesirable paramagnetic relaxation enhancement (PRE) which shortens not only the longitudinal relaxation times T1 but also the lifetimes TLLS of LLSs. It is shown in this work that PRE by TEMPOL is less deleterious for LLSs than for longitudinal magnetization for four different molecules: 2,2-dimethyl-2-silapentane-5-sulfonate (DSS), homotaurine, taurine, and acetylcholine. The relaxivities rLLS (i.e., the slopes of the relaxation rate constants RLLS as a function of the radical concentration) are 3 to 5 times smaller than the relaxivities r1 of longitudinal magnetization. Partial delocalization of the LLSs across neighboring CH2 groups may decrease this advantage, but in practice, this effect was observed to be small, for example, when comparing taurine containing two CH2 groups and homotaurine with three CH2 groups. Regardless of whether the LLSs are delocalized or not, it is shown that PRE should not be a major problem for experiments combining d-DNP and LLSs, provided the concentration of paramagnetic species after dissolution does not exceed 1 mM, a condition that is readily fulfilled in typical d-DNP experiments. In bullet d-DNP experiments however, it may be necessary to decrease the concentration of TEMPOL or to add ascorbate for chemical reduction.

3.
Phys Chem Chem Phys ; 25(21): 15040-15051, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37218287

RESUMEN

Dynamical nuclear polarization (DNP) is a powerful method that allows one to polarize virtually any spin-bearing nucleus by transferring electron polarization by microwave irradiation of the electron Zeeman transitions. Under certain conditions, the DNP process can be described in thermodynamical terms using the thermal mixing (TM) model. Different nuclear species can exchange energy indirectly through their interactions with the electron spins and reach a common spin temperature. Such "cross-talk" effects can occur between proton (H) and deuterium (D) nuclei in de- and re-polarization experiments. In this work, we investigate such effects experimentally, using either protonated or deuterated TEMPOL radicals as polarizing agents. An analysis of these experiments based on Provotorov's equations allows one to extract the relevant kinetic parameters, such as the rates of energy transfer between the different reservoirs, and the heat capacity of the non-Zeeman (NZ) electron reservoir, while the heat capacities of the proton and deuterium reservoirs can be estimated based on their usual expressions. These parameters allow one to make predictions of the behaviour of heteronuclei such as carbon-13 or phosphorous-31, provided that their heat capacities are negligible. Finally, we present an experimental study of the dependence of Provotorov's kinetic parameters on the TEMPOL concentration and on the H/D ratio, thus providing insight into the nature of "hidden" spins that are not observable directly because of their proximity to the radicals.

4.
Sci Adv ; 8(48): eade2113, 2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36459545

RESUMEN

In nuclear magnetic resonance (NMR), the lifetimes of long-lived states (LLSs) are exquisitely sensitive to their environment. However, the number of molecules where such states can be excited has hitherto been rather limited. Here, it is shown that LLSs can be readily excited in many common molecules that contain two or more neighboring CH2 groups. Accessing such LLSs does not require any isotopic enrichment, nor does it require any stereogenic centers to lift the chemical equivalence of CH2 protons. LLSs were excited in a variety of metabolites, neurotransmitters, vitamins, amino acids, and other molecules. One can excite LLSs in several different molecules simultaneously. In combination with magnetic resonance imaging, LLSs can reveal a contrast upon noncovalent binding of ligands to macromolecules. This suggests new perspectives to achieve high-throughput parallel drug screening by NMR.

5.
Phys Rev Lett ; 129(18): 183203, 2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36374699

RESUMEN

Long-lived states (LLS) involving pairs of magnetically inequivalent but chemically equivalent proton spins in aliphatic (CH_{2})_{n} chains can be excited by simultaneous application of weak selective radio frequency fields at n chemical shifts by polychromatic spin-lock induced crossing. The LLS are delocalized throughout the aliphatic chains by mixing of intrapair singlet states and by excitation of LLS comprising products of four and six spin operators. The measured lifetimes T_{LLS} in a model compound are about 5 times longer than T_{1} and are strongly affected by interactions with macromolecules.

6.
J Phys Chem B ; 126(24): 4599-4610, 2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35675502

RESUMEN

Dissolution dynamic nuclear polarization (DDNP) is a versatile tool to boost signal amplitudes in solution-state nuclear magnetic resonance (NMR) spectroscopy. For DDNP, nuclei are spin-hyperpolarized "ex situ" in a dedicated DNP device and then transferred to an NMR spectrometer for detection. Dramatic signal enhancements can be achieved, enabling shorter acquisition times, real-time monitoring of fast reactions, and reduced sample concentrations. Here, we show how the sample transfer in DDNP experiments can affect NMR spectra through cross-correlated cross-relaxation (CCR), especially in the case of low-field passages. Such processes can selectively invert signals of 13C spins in proton-carrying moieties. For their investigations, we use schemes for simultaneous or "parallel" detection of hyperpolarized 1H and 13C nuclei. We find that 1H → 13C CCR can invert signals of 13C spins if the proton polarization is close to 100%. We deduce that low-field passage in a DDNP experiment, a common occurrence due to the introduction of so-called "ultra-shielded" magnets, accelerates these effects due to field-dependent paramagnetic relaxation enhancements that can influence CCR. The reported effects are demonstrated for various molecules, laboratory layouts, and DDNP systems. As coupled 13C-1H spin systems are ubiquitous, we expect similar effects to be observed in various DDNP experiments. This might be exploited for selective spectroscopic labeling of hydrocarbons.


Asunto(s)
Imagen por Resonancia Magnética , Protones , Espectroscopía de Resonancia Magnética/métodos , Solubilidad
7.
J Phys Chem Lett ; 13(1): 175-182, 2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-34965134

RESUMEN

Dipolar or quadrupolar echoes allow one to observe undistorted powder patterns, in contrast to simple Fourier transformations of free induction decays (FIDs). In this work, the buildup of proton polarization due to dynamic nuclear polarization (DNP) is monitored by observing echoes rather than FIDs. When the microwave irradiation is interrupted during the buildup of DNP, the electrons relax back to their Boltzmann distribution at high fields (B0 = 6.7 T) and low temperatures 1.2 < Tsample < 4.0 K, so that dipolar flip-flop-flip terms involving two electrons and one proton become largely ineffective as a mechanism of proton decoherence. This leads to a prolongation of the nuclear coherence lifetime T2'(1H). The increase in T2'(1H) leads to transient surges of the amplitudes of spin echoes. Conversely, transient slumps of spin echoes are observed when the microwave irradiation is switched back on, due to a shortening of nuclear coherence lifetimes.

8.
Chemphyschem ; 23(3): e202100786, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-34914864

RESUMEN

Diffusion processes can be followed directly by recording one-dimensional images of a selected slice at variable intervals after selective inversion of the magnetization. The resulting diffusion coefficients of H2 O and DMSO are consistent with earlier studies at different temperatures, obtained by monitoring the attenuation of NMR signals as a function of the gradient amplitude in gradient echo sequences.


Asunto(s)
Difusión , Espectroscopía de Resonancia Magnética/métodos
9.
Science ; 373(6551): 164, 2021 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-34244401
10.
Molecules ; 26(11)2021 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-34205016

RESUMEN

This contribution is an attempt to evoke the favorable atmosphere that prevailed in Lausanne around 1986 and provided the backdrop of our invention of two-dimensional ion cyclotron resonance mass spectroscopy (2D ICR-MS). To avoid a self-centered histoire d'ancien combattant, we shall try to emphasize the context: the contributions of key players within our nascent research group at UNIL and the established group of Tino Gäumann at EPFL, the role of external speakers, and the open atmosphere that was not yet polluted by bibliometrics, obsessive concern with impact factors, and top-down management of research. We shall also explain why the idea of 2D ICR-MS has been ignored for many years and still has a limited impact: different scientific cultures in the ICR and NMR communities, different concerns with fundamental vs. applied research, different status of theory and numerical simulations, different levels of commitment of instrument manufacturers, not to mention many theoretical problems that appear to be at least as challenging in ICR as in NMR.

11.
Phys Chem Chem Phys ; 23(16): 9715-9720, 2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33861279

RESUMEN

A novel method dubbed ZULF-TOCSY results from the combination of Zero and Ultra-Low Field (ZULF) with high-field, high-resolution NMR, leading to a generalization of the concept of total correlation spectroscopy (TOCSY). ZULF-TOCSY is a new building block for NMR methods, which has the unique property that the polarization is evenly distributed among all NMR-active nuclei such as 1H, 13C, 15N, 31P, etc., provided that they belong to the same coupling network, and provided that their relaxation is not too fast at low fields, as may occur in macromolecules. Here, we show that ZULF-TOCSY correlations can be observed for peptides at natural isotopic abundance, such as the protected hexapeptide Boc-Met-enkephalin. The analysis of ZULF-TOCSY spectra readily allows one to make sequential assignments, thus offering an alternative to established heteronuclear 2D experiments like HMBC. For Boc-Met-enkephalin, we show that ZULF-TOCSY allows one to observe all expected cross-peaks between carbonyl carbons and α-CH protons, while the popular HMBC method provides insufficient information.


Asunto(s)
Encefalina Metionina/análogos & derivados , Espectroscopía de Resonancia Magnética , Análisis Espectral/métodos
12.
Phys Chem Chem Phys ; 23(3): 2245-2251, 2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33443274

RESUMEN

The 17O resonances of zirconium-oxo clusters that can be found in porous Zr carboxylate metal-organic frameworks (MOFs) have been investigated by magic-angle spinning (MAS) NMR spectroscopy enhanced by dynamic nuclear polarization (DNP). High-resolution 17O spectra at 0.037% natural abundance could be obtained in 48 hours, thanks to DNP enhancement of the 1H polarization by factors ε(1H) = Swith/Swithout = 28, followed by 1H → 17O cross-polarization, allowing a saving in experimental time by a factor of ca. 800. The distinct 17O sites from the oxo-clusters can be resolved at 18.8 T. Their assignment is supported by density functional theory (DFT) calculations of chemical shifts and quadrupolar parameters. Protonation of 17O sites seems to be leading to large characteristic shifts. Hence, natural abundance 17O NMR spectra of diamagnetic MOFs can thus be used to probe and characterize the local environment of different 17O sites on an atomic scale.

13.
J Phys Chem Lett ; 11(9): 3219-3225, 2020 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-32251593

RESUMEN

Dynamic nuclear polarization of samples at low temperatures, typically between 1.2 and 4.2 K, allows one to achieve spin temperatures of as low as 2 mK so that for many nuclear isotopes the high-temperature approximation is violated for the nuclear Zeeman interaction. This leads to characteristic asymmetries in powder spectra. We show that the line shapes due to the quadrupolar couplings of deuterium spins present in virtually all solvents used for such experiments (DNP juice) allow the quick yet accurate determination of the deuterium spin temperature or, equivalently, the deuterium polarization. The observation of quadrupolar echoes excited by small flip-angle pulses allows one to monitor the build-up and decay of the positive or negative deuterium polarization.

14.
Chemphyschem ; 21(10): 1044-1051, 2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32191377

RESUMEN

The isotopic enrichment of nucleic acids with nitrogen-15 is often carried out by solid-phase synthesis of oligonucleotides using phosphoramidite precursors that are synthetically demanding and expensive. These synthetic challenges, combined with the overlap of chemical shifts, explain the lag of nitrogen-15 NMR studies of nucleic acids behind those of proteins. For the structural characterization of DNA and RNA-related systems, new NMR methods that exploit the naturally occurring 99.9 % abundant nitrogen-14 isotope are therefore highly desirable. In this study, we have investigated nitrogen-14 spectra of self-assembled quartets based on the nucleobase guanine in the solid state by means of magic-angle spinning NMR spectroscopy. The network of dipolar proton-nitrogen couplings between neighboring stacked purine units is probed by 2D spectra based on 1 H→14 N→1 H double cross-polarization. Interplane dipolar contacts are identified between the stacked G quartets. The assignment is supported by density functional theory (DFT) calculations of the anisotropic chemical shifts and quadrupolar parameters. The experimental spectra are fully consistent with internuclear distances obtained in silico. Averaging of chemical shifts due to internal motions can be interpreted by semiempirical calculations. This method can easily be extended to synthetic G quartets based on nucleobase or nucleoside analogs and potentially to oligonucleotides.


Asunto(s)
ADN/química , Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , ARN/química , Cristalografía por Rayos X , Teoría Funcional de la Densidad , Nitrógeno/química
15.
J Biomol NMR ; 74(2-3): 161-171, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32040802

RESUMEN

Signal enhancements of up to two orders of magnitude in protein NMR can be achieved by employing HDO as a vector to introduce hyperpolarization into folded or intrinsically disordered proteins. In this approach, hyperpolarized HDO produced by dissolution-dynamic nuclear polarization (D-DNP) is mixed with a protein solution waiting in a high-field NMR spectrometer, whereupon amide proton exchange and nuclear Overhauser effects (NOE) transfer hyperpolarization to the protein and enable acquisition of a signal-enhanced high-resolution spectrum. To date, the use of this strategy has been limited to 1D and 1H-15N 2D correlation experiments. Here we introduce 2D 13C-detected D-DNP, to reduce exchange-induced broadening and other relaxation penalties that can adversely affect proton-detected D-DNP experiments. We also introduce hyperpolarized 3D spectroscopy, opening the possibility of D-DNP studies of larger proteins and IDPs, where assignment and residue-specific investigation may be impeded by spectral crowding. The signal enhancements obtained depend in particular on the rates of chemical and magnetic exchange of the observed residues, thus resulting in non-uniform 'hyperpolarization-selective' signal enhancements. The resulting spectral sparsity, however, makes it possible to resolve and monitor individual amino acids in IDPs of over 200 residues at acquisition times of just over a minute. We apply the proposed experiments to two model systems: the compactly folded protein ubiquitin, and the intrinsically disordered protein (IDP) osteopontin (OPN).


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Resonancia Magnética Nuclear Biomolecular , Osteopontina/química , Ubiquitina/química , Agua/química , Humanos
16.
J Phys Chem A ; 123(45): 9763-9769, 2019 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-31633935

RESUMEN

The longitudinal spin-lattice relaxation properties of water molecules trapped in a static powdered polycrystalline sample of barium chlorate monohydrate are investigated by means of solid-state 1H NMR spectroscopy. Different portions of the inhomogeneous Pake pattern that are associated with crystallites at different orientations with respect to the external magnetic field show either a mono- or a biexponential recovery. At high field (9.4 T), the chemical shift anisotropy is the main interaction that is responsible for the inhomogeneity of the relaxation rates. A theoretical description of rapid two-site hopping about the H-O-H bisector in the framework of Liouville space agrees very well with the experimental evidence. Numerical simulations predict a distribution of monoexponential time constants associated with individual single-crystal orientations. Overlapping signals give rise to biexponential recovery. This is confirmed experimentally by 1H NMR spectra of static single crystals.

17.
Chemphyschem ; 20(21): 2830-2835, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31502395

RESUMEN

Dissolution dynamic nuclear polarization (D-DNP) probes are usually designed for one or at most two specific nuclei. Investigation of multiple nuclei usually requires manufacturing a number of costly probes. In addition, changing the probe is a time-consuming process since a system that works at low temperature (usually between 1.2 and 4.2 K) must be warmed up, thus increasing the risks of contamination. Here, an efficient apparatus is described for D-DNP designed not only for microwave-enhanced direct observation of a wide range of nuclei S such as 1 H, 13 C, 2 H, 23 Na, and 17 O, but also for cross-polarization (CP) from I=1 H to such S nuclei. Unlike most conventional designs, the tuning and matching circuits are partly immersed in superfluid helium at temperatures down to 1.2 K. Intense radio-frequency (RF) fields with amplitudes on the order of 50 kHz or better can be applied simultaneously to both nuclei I and S using RF amplifiers with powers on the order of 90 and 80 W, respectively, without significant losses of liquid helium. The system can operate at temperatures over a wide range between 1.2 and 300 K.

18.
J Am Chem Soc ; 141(32): 12448-12452, 2019 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-31368708

RESUMEN

Protein and peptide interactions are characterized in the liquid state by multidimensional NMR spectroscopy experiments, which can take hours to record. We show that starting from hyperpolarized HDO, two-dimensional (2D) proton correlation maps of a peptide, either free in solution or interacting with liposomes, can be acquired in less than 60 s. In standard 2D NMR spectroscopy without hyperpolarization, the acquisition time required for similar spectral correlations is on the order of hours. This hyperpolarized experiment enables the identification of amino acids featuring solvent-interacting hydrogens and provides fast spectroscopic analysis of peptide conformers. Sensitivity-enhanced 2D proton correlation spectroscopy is a useful and straightforward tool for biochemistry and structural biology, as it does not recur to nitrogen-15 or carbon-13 isotope enrichment.

19.
Phys Chem Chem Phys ; 21(25): 13696-13705, 2019 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-31198920

RESUMEN

Dissolution dynamic nuclear polarization (D-DNP) experiments rely on the transfer of a sample between two high-field magnets. During this transfer, samples might experience passage through regions where the stray fields of the magnets are very weak, can approach zero, and even change their sign. This can lead to unexpected spectral features in spin systems that undergo transitions from weak- to strong-coupling regimes and vice versa, much like in field cycling nuclear magnetic resonance experiments. We herein demonstrate that the spectral features observed in D-DNP experiments can be rationalized, provided the time-dependence of the spin Hamiltonian upon field cycling is sufficiently adiabatic. Under such conditions, a passage through a weak static field can lead to the emergence of a long-lived state (LLS) based on an imbalance between the populations of singlet and triplet states in pairs of nuclei that are strongly coupled during the passage through low field. The LLS entails the appearance of anti-phase multiplet components upon transfer to a high-field magnet for observation of NMR signals.

20.
J Phys Chem Lett ; 10(12): 3224-3231, 2019 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-31059264

RESUMEN

Water molecules trapped in crystals of barium chlorate monohydrate have been investigated by magic-angle spinning (MAS) proton NMR spectroscopy in the temperature range 110-300 K. At high temperatures, a single spinning sideband pattern is observed. Below 150 K, however, two interleaved spinning sideband manifolds appear, with distinct centerbands that do not coincide with the average isotropic chemical shift seen at high temperatures. This hitherto unknown "cross-term splitting" results from the interplay of the homonuclear dipole-dipole coupling and two anisotropic proton shielding tensors that have identical principal components but nonequivalent orientations. The resulting cross terms cannot be averaged out by rotation about the magic angle. The analysis of the exchange-induced broadening, coalescence, and narrowing of the cross-term splitting in MAS spectra allows one to estimate the rate of exchange of the two protons between 140 and 190 K. The experimental data is compared with 2H and 1H NMR studies of the same sample reported in the literature. Density functional theory methods are utilized to estimate the thermal activation energy for a 2-fold hopping process of proton exchange about the H-O-H bisector. The Bell-Limbach model allows one to take into account contributions due to incoherent quantum tunneling in the low-temperature regime.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...