Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 460: 132516, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37703733

RESUMEN

The increasing share of using biofuels in vehicles (mandated by current regulations) leads to a reduction in particle size, resulting in increased particle toxicity. However, existing regulations disregarded small particles (sub-23 nm) that are more toxic. This impact is more significant during vehicle cold-start operation, which is an inevitable frequent daily driving norm where after-treatment systems prove ineffective. This study investigates the impact of biofuel and lubricating oil (as a source of nanoparticles) on the concentration, size distribution, median diameter of PN and PM, and their proportion at size ranges within accumulation and nucleation modes during four phases of cold-start and warm-up engine operation (diesel-trucks/busses application). The fuels used were 10% and 15% biofuel and with the addition of 5% lubricating oil to the fuel. Results show that as the engine warms up, PN for all the fuels increases and the size of particles decreases. PN concentration with a fully warmed-up engine was up to 132% higher than the cold-start. Sub-23 nm particles accounted for a significant proportion of PN (9%) but a smaller proportion of PM (0.1%). The fuel blend with 5% lubricating oil showed a significant increase in PN concentration and a decrease in particle size during cold-start.

2.
Environ Pollut ; 290: 118052, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34479164

RESUMEN

In the transportation sector, the share of biofuels such as biodiesel is increasing and it is known that such fuels significantly affect NOx emissions. In addition to NOx emission from diesel engines, which is a significant challenge to vehicle manufacturers in the most recent emissions regulation (Euro 6.2), this study investigates NO2 which is a toxic emission that is currently unregulated but is a focus to be regulated in the next regulation (Euro 7). This manuscript studies how the increasing share of biofuels affects the NO2, NOx, and NO2/NOx ratio during cold-start (in which the after-treatment systems are not well-effective and mostly happens in urban areas). Using a turbocharged cummins diesel engine (with common-rail system) fueled with diesel and biofuel derived from coconut (10 and 20% blending ratio), this study divides the engine warm-up period into 7 stages and investigates official cold- and hot-operation periods in addition to some intermediate stages that are not defined as cold in the regulation and also cannot be considered as hot-operation. Engine coolant, lubricating oil and exhaust temperatures, injection timing, cylinder pressure, and rate of heat release data were used to explain the observed trends. Results showed that cold-operation NOx, NO2, and NO2/NOx ratio were 31-60%, 1.14-2.42 times, and 3-8% higher than the hot-operation, respectively. In most stages, NO2 and the NO2/NOx ratio with diesel had the lowest value and they increased with an increase of biofuel in the blend. An injection strategy change significantly shifted the in-cylinder pressure and heat release diagrams, aligned with the sudden NOx drop during the engine warm-up. The adverse effect of cold-operation on NOx emissions increased with increasing biofuel share.


Asunto(s)
Biocombustibles , Gasolina , Frío , Dióxido de Nitrógeno , Emisiones de Vehículos
3.
Environ Pollut ; 255(Pt 2): 113260, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31622808

RESUMEN

Emissions from ships at berth are small compared to the total ship emissions; however, they are one of the main contributors to pollutants in the air of densely-populated areas, consequently heavily affecting public health. This is due to auxiliary marine engines being used to generate electric power and steam for heating and providing services. The present study has been conducted on an engine representative of a marine auxiliary, which was a heavy duty, six-cylinder, turbocharged and after-cooled engine with a high pressure common rail injection system. Engine performance and emission characterisations during cold start are the focus of this paper, since cold start is significantly influential. Three tested fuels were used, including the reference diesel and two IMO (International Maritime Organization) compliant spiked fuels. The research engine was operated at a constant speed and 25% load condition after 12 h cooled soak. Results show that during cold start, significant heat generated from combustion is used to heat the engine block, coolant and lubricant. During the first minute, compared to the second minute, emissions of particle number (PN), carbon monoxide (CO), particulate matter (PM), and nitrogen oxides (NOx) were approximately 10, 4, 2 and 1.5 times higher, respectively. The engine control unit (ECU) plays a vital role in reducing engine emissions by changing the engine injection strategy based on the engine coolant temperature. IMO-compliant fuels, which were higher viscosity fuels associated with high sulphur content, resulted in an engine emission increase during cold start. It should be taken into account that auxiliary marine diesel engines, working at partial load conditions during cold start, contribute considerably to emissions in coastal areas. It demonstrates a need to implement practical measures, such as engine pre-heating, to obtain both environmental and public health advantages in coastal areas.


Asunto(s)
Automóviles , Frío , Gasolina/análisis , Emisiones de Vehículos/análisis , Contaminantes Atmosféricos/análisis , Monóxido de Carbono/análisis , Óxidos de Nitrógeno/análisis , Material Particulado/análisis , Navíos , Azufre/análisis , Temperatura
4.
Environ Pollut ; 243(Pt B): 1943-1951, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30327214

RESUMEN

Particle emission characteristics and engine performance were investigated from an auxiliary, heavy duty, six-cylinder, turbocharged and after-cooled diesel engine with a common rail injection system using spiked fuels with different combinations of sulphur (S) and vanadium (V) spiking. The effect of fuel S content on both particle number (PN) and mass (PM) was clearly observed in this study. Higher PN and PM were observed for fuels with higher S contents at all engine load conditions. This study also found a correlation between fuel S content and nucleation mode particle number concentration which have more harmful impact on human health than larger particles. The highest PN and PM were observed at partial load conditions. In addition, S in fuel resulted in higher viscosity of spiked fuels, which led to lower engine blow-by. Fuel V content was observed in this study, evidencing that it had no clear effect on engine performance and emissions. Increased engine load also resulted in higher engine blow-by. The lower peak of in-cylinder pressure observed at both pre-mixed and diffusion combustion phases with the spiked fuels may be associated with the lower energy content in the fuel blends compared to diesel fuel.


Asunto(s)
Gasolina/análisis , Material Particulado/química , Azufre/análisis , Vanadio/análisis , Emisiones de Vehículos/análisis , Contaminantes Atmosféricos/análisis , Humanos , Material Particulado/análisis , Navíos
5.
Sci Rep ; 8(1): 2457, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29410435

RESUMEN

The disposal of waste rubber and scrap tyres is a significant issue globally; disposal into stockpiles and landfill poses a serious threat to the environment, in addition to creating ecological problems. Fuel production from tyre waste could form part of the solution to this global issue. Therefore, this paper studies the potential of fuels derived from waste tyres as alternatives to diesel. Production methods and the influence of reactor operating parameters (such as reactor temperature and catalyst type) on oil yield are outlined. These have a major effect on the performance and emission characteristics of diesel engines when using tyre derived fuels. In general, tyre derived fuels increase the brake specific fuel consumption and decrease the brake thermal efficiency. The majority of studies indicate that NOx emissions increase with waste tyre derived fuels; however, a few studies have reported the opposite trend. A similar increasing trend has been observed for CO and CO2 emissions. Although most studies reported an increase in HC emission owing to lower cetane number and higher density, some studies have reported reduced HC emissions. It has been found that the higher aromatic content in such fuels can lead to increased particulate matter emissions.

6.
Environ Sci Technol ; 47(4): 1904-12, 2013 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-23343018

RESUMEN

Compression ignition (CI) engine design is subject to many constraints, which present a multicriteria optimization problem that the engine researcher must solve. In particular, the modern CI engine must not only be efficient but must also deliver low gaseous, particulate, and life cycle greenhouse gas emissions so that its impact on urban air quality, human health, and global warming is minimized. Consequently, this study undertakes a multicriteria analysis, which seeks to identify alternative fuels, injection technologies, and combustion strategies that could potentially satisfy these CI engine design constraints. Three data sets are analyzed with the Preference Ranking Organization Method for Enrichment Evaluations and Geometrical Analysis for Interactive Aid (PROMETHEE-GAIA) algorithm to explore the impact of (1) an ethanol fumigation system, (2) alternative fuels (20% biodiesel and synthetic diesel) and alternative injection technologies (mechanical direct injection and common rail injection), and (3) various biodiesel fuels made from 3 feedstocks (i.e., soy, tallow, and canola) tested at several blend percentages (20-100%) on the resulting emissions and efficiency profile of the various test engines. The results show that moderate ethanol substitutions (~20% by energy) at moderate load, high percentage soy blends (60-100%), and alternative fuels (biodiesel and synthetic diesel) provide an efficiency and emissions profile that yields the most "preferred" solutions to this multicriteria engine design problem. Further research is, however, required to reduce reactive oxygen species (ROS) emissions with alternative fuels and to deliver technologies that do not significantly reduce the median diameter of particle emissions.


Asunto(s)
Gases/análisis , Material Particulado/análisis , Emisiones de Vehículos , Algoritmos , Biocombustibles , Técnicas de Apoyo para la Decisión , Diseño de Equipo , Etanol , Efecto Invernadero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA