Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Vaccine ; 41(32): 4639-4647, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37344260

RESUMEN

Determination of the potency of a vaccine is critical to ensuring that an appropriate dose is delivered, lot-to-lot consistency is maintained, and that the formulation is stable over the life of the vaccine. The potency of inactivated influenza vaccines is determined routinely by the Single Radial Immunodiffusion (SRID) assay. A number of alternative potency assays have been proposed and have been under evaluation in recent years. The aim of this study was to compare a surface plasmon resonance-based assay and two different enzyme linked immunoassays against the current potency assay, SRID, and against mouse immunogenicity when haemagglutinin antigen of the A(H1N1)pdm09 component of an inactivated influenza vaccine is stressed by elevated temperature, low pH and freezing. This analysis demonstrated that the alternative assays had good correspondence with SRID for samples from most stress conditions and that the immunogenicity in mice corresponded with potency in SRID for all stress samples. Subject to further analysis, the assays have been shown to have the potential to possibly replace, and at least complement, SRID.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Animales , Ratones , Humanos , Vacunas de Productos Inactivados , Glicoproteínas Hemaglutininas del Virus de la Influenza , Gripe Humana/prevención & control , Potencia de la Vacuna
2.
Front Immunol ; 14: 1147028, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37033922

RESUMEN

Background: The current compendial assay for haemagglutinin antigen potency in influenza vaccine is the single radial immunodiffusion (SRID) which is time consuming and can lead to delays in release of vaccine. We previously described an alternate capture and detection enzyme linked immunoassay (ELISA) that utilizes sub-type specific, sub-clade cross-reactive monoclonal antibodies (mAbs) that are haemagglutination inhibiting (HAI) and correlate with SRID. The aim of this study is to determine the applicability of ELISA across current platforms for quantitation of seasonal quadrivalent vaccine. Methods: A single mAb capture and detection ELISA was employed to quantitate hemagglutinin (HA) derived from different vaccine platforms and host organisms and compared to SRID and a polyclonal antibody based ELISA. Results: We selected mAbs that displayed appropriate characteristics for a stability indicating potency assay which reacted to avian, insect and mammalian derived HA. Qualification of the homologous mAb assay against egg and cell derived HA demonstrated performance similar to that of the SRID however, superiority in sensitivity and specificity against strains from both influenza B/Victoria and B/Yamagata lineages. Analysis of drifted strains across multiple seasons demonstrated continued utility of this approach, reducing the need to develop reagents each season. With modification of the assay, we were able to accurately measure HA from different platforms and process stages using a single calibrated reference standard. We demonstrated the accuracy of ELISA when testing vaccine formulations containing selected adjuvants at standard and higher concentrations. Accelerated stability analysis indicated a strong correlation in the rate of degradation between the homologous mAb ELISA and SRID but not with ELISA utilizing polyclonal antisera. Further, we demonstrated specificity was restricted to the trimeric and oligomeric forms of HA but not monomeric HA. Conclusion: We believe this homologous mAb ELISA is a suitable replacement for the SRID compendial assay for HA antigen quantitation and stability assessment. Identification of suitable mAbs that are applicable across multiple vaccine platforms with extended sub-type reactivity across a number of influenza seasons, indicate that this assay has broad applicability, leading to earlier availability of seasonal and pandemic vaccines without frequent replacement of polyclonal antisera that is required with SRID.


Asunto(s)
Células , Huevos , Ensayo de Inmunoadsorción Enzimática , Hemaglutininas , Vacunas contra la Influenza , Proteínas Recombinantes , Animales , Humanos , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Ensayo de Inmunoadsorción Enzimática/métodos , Glicoproteínas Hemaglutininas del Virus de la Influenza , Hemaglutininas/química , Sueros Inmunes , Vacunas contra la Influenza/química , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/uso terapéutico , Gripe Humana/prevención & control , Mamíferos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Células/química , Células/inmunología
3.
PLoS One ; 16(7): e0255282, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34329337

RESUMEN

Microarray patches (MAPs) have the potential to be a safer, more acceptable, easier to use and more cost-effective method for administration of vaccines when compared to the needle and syringe. Since MAPs deliver vaccine to the dermis and epidermis, a degree of local immune response at the site of application is expected. In a phase 1 clinical trial (ACTRN 12618000112268), the Vaxxas high-density MAP (HD-MAP) was used to deliver a monovalent, split inactivated influenza virus vaccine into the skin. HD-MAP immunisation led to significantly enhanced humoral responses on day 8, 22 and 61 compared with IM injection of a quadrivalent commercial seasonal influenza vaccine (Afluria Quadrivalent®). Here, the aim was to analyse cellular responses to HD-MAPs in the skin of trial subjects, using flow cytometry and immunohistochemistry. HD-MAPs were coated with a split inactivated influenza virus vaccine (A/Singapore/GP1908/2015 [H1N1]), to deliver 5 µg haemagglutinin (HA) per HD-MAP. Three HD-MAPs were applied to the volar forearm (FA) of five healthy volunteers (to achieve the required 15 µg HA dose), whilst five control subjects received three uncoated HD-MAPs (placebo). Local skin response was recorded for over 61 days and haemagglutination inhibition antibody titres (HAI) were assessed on days 1, 4, 8, 22, and 61. Skin biopsies were taken before (day 1), and three days after HD-MAP application (day 4) and analysed by flow-cytometry and immunohistochemistry to compare local immune subset infiltration. HD-MAP vaccination with 15 µg HA resulted in significant HAI antibody titres compared to the placebo group. Application of uncoated placebo HD-MAPs resulted in mild erythema and oedema in most subjects, that resolved by day 4 in 80% of subjects. Active, HA-coated HD-MAP application resulted in stronger erythema responses on day 4, which resolved between days 22-61. Overall, these erythema responses were accompanied by an influx of immune cells in all subjects. Increased cell infiltration of CD3+, CD4+, CD8+ T cells as well as myeloid CD11b+ CD11c+ and non-myeloid CD11b- dendritic cells were observed in all subjects, but more pronounced in active HD-MAP groups. In contrast, CD19+/CD20+ B cell counts remained unchanged. Key limitations include the use of an influenza vaccine, to which the subjects may have had previous exposure. Different results might have been obtained with HD-MAPs inducing a primary immune response. In conclusion, influenza vaccine administered to the forearm (FA) using the HD-MAP was well-tolerated and induced a mild to moderate skin response with lymphocytic infiltrate at the site of application.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Sistemas de Liberación de Medicamentos , Inmunidad Celular/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/administración & dosificación , Piel/inmunología , Adulto , Antígenos CD/inmunología , Femenino , Humanos , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Gripe Humana/prevención & control , Masculino , Persona de Mediana Edad , Factores de Tiempo
4.
PLoS Med ; 17(3): e1003024, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32181756

RESUMEN

BACKGROUND: The Vaxxas high-density microarray patch (HD-MAP) consists of a high density of microprojections coated with vaccine for delivery into the skin. Microarray patches (MAPs) offer the possibility of improved vaccine thermostability as well as the potential to be safer, more acceptable, easier to use, and more cost-effective for the administration of vaccines than injection by needle and syringe (N&S). Here, we report a phase I trial using the Vaxxas HD-MAP to deliver a monovalent influenza vaccine that was to the best of our knowledge the first clinical trial to evaluate the safety, tolerability, and immunogenicity of lower doses of influenza vaccine delivered by MAPs. METHODS AND FINDINGS: HD-MAPs were coated with a monovalent, split inactivated influenza virus vaccine containing A/Singapore/GP1908/2015 H1N1 haemagglutinin (HA). Between February 2018 and March 2018, 60 healthy adults (age 18-35 years) in Melbourne, Australia were enrolled into part A of the study and vaccinated with either: HD-MAPs delivering 15 µg of A/Singapore/GP1908/2015 H1N1 HA antigen (A-Sing) to the volar forearm (FA); uncoated HD-MAPs; intramuscular (IM) injection of commercially available quadrivalent influenza vaccine (QIV) containing A/Singapore/GP1908/2015 H1N1 HA (15 µg/dose); or IM injection of H1N1 HA antigen (15 µg/dose). After 22 days' follow-up and assessment of the safety data, a further 150 healthy adults were enrolled and randomly assigned to 1 of 9 treatment groups. Participants (20 per group) were vaccinated with HD-MAPs delivering doses of 15, 10, 5, 2.5, or 0 µg of HA to the FA or 15 µg HA to the upper arm (UA), or IM injection of QIV. The primary objectives of the study were safety and tolerability. Secondary objectives were to assess the immunogenicity of the influenza vaccine delivered by HD-MAP. Primary and secondary objectives were assessed for up to 60 days post-vaccination. Clinical staff and participants were blind as to which HD-MAP treatment was administered and to administration of IM-QIV-15 or IM-A/Sing-15. All laboratory investigators were blind to treatment and participant allocation. Two further groups in part B (5 participants per group), not included in the main safety and immunological analysis, received HD-MAPs delivering 15 µg HA or uncoated HD-MAPs applied to the forearm. Biopsies were taken on days 1 and 4 for analysis of the cellular composition from the HD-MAP application sites. The vaccine coated onto HD-MAPs was antigenically stable when stored at 40°C for at least 12 months. HD-MAP vaccination was safe and well tolerated; any systemic or local adverse events (AEs) were mild or moderate. Observed systemic AEs were mostly headache or myalgia, and local AEs were application-site reactions, usually erythema. HD-MAP administration of 2.5 µg HA induced haemagglutination inhibition (HAI) and microneutralisation (MN) titres that were not significantly different to those induced by 15 µg HA injected IM (IM-QIV-15). HD-MAP delivery resulted in enhanced humoral responses compared with IM injection with higher HAI geometric mean titres (GMTs) at day 8 in the MAP-UA-15 (GMT 242.5, 95% CI 133.2-441.5), MAP-FA-15 (GMT 218.6, 95% CI 111.9-427.0), and MAP-FA-10 (GMT 437.1, 95% CI 254.3-751.3) groups compared with IM-QIV-15 (GMT 82.8, 95% CI 42.4-161.8), p = 0.02, p = 0.04, p < 0.001 for MAP-UA-15, MAP-FA-15, and MAP-FA-10, respectively. Higher titres were also observed at day 22 in the MAP-FA-10 (GMT 485.0, 95% CI 301.5-780.2, p = 0.001) and MAP-UA-15 (367.6, 95% CI 197.9-682.7, p = 0.02) groups compared with the IM-QIV-15 group (GMT 139.3, 95% CI 79.3-244.5). Results from a panel of exploratory immunoassays (antibody-dependent cellular cytotoxicity, CD4+ T-cell cytokine production, memory B cell (MBC) activation, and recognition of non-vaccine strains) indicated that, overall, Vaxxas HD-MAP delivery induced immune responses that were similar to, or higher than, those induced by IM injection of QIV. The small group sizes and use of a monovalent influenza vaccine were limitations of the study. CONCLUSIONS: Influenza vaccine coated onto the HD-MAP was stable stored at temperatures up to 40°C. Vaccination using the HD-MAP was safe and well tolerated and resulted in immune responses that were similar to or significantly enhanced compared with IM injection. Using the HD-MAP, a 2.5 µg dose (1/6 of the standard dose) induced HAI and MN titres similar to those induced by 15 µg HA injected IM. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry (ANZCTR.org.au), trial ID 108 ACTRN12618000112268/U1111-1207-3550.


Asunto(s)
Inmunogenicidad Vacunal , Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/administración & dosificación , Gripe Humana/prevención & control , Vacunación , Administración Cutánea , Adolescente , Adulto , Anticuerpos Antivirales/sangre , Australia , Células Cultivadas , Estabilidad de Medicamentos , Femenino , Humanos , Inmunoglobulina A/metabolismo , Vacunas contra la Influenza/efectos adversos , Gripe Humana/inmunología , Gripe Humana/virología , Inyecciones Intramusculares , Masculino , Saliva/inmunología , Saliva/virología , Linfocitos T/inmunología , Linfocitos T/virología , Factores de Tiempo , Parche Transdérmico , Resultado del Tratamiento , Vacunación/efectos adversos , Adulto Joven
5.
Vaccine ; 36(26): 3779-3788, 2018 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-29779922

RESUMEN

BACKGROUND: Injection using needle and syringe (N&S) is the most widely used method for vaccination, but requires trained healthcare workers. Fear of needles, risk of needle-stick injury, and the need to reconstitute lyophilised vaccines, are also drawbacks. The Nanopatch (NP) is a microarray skin patch comprised of a high-density array of microprojections dry-coated with vaccine that is being developed to address these shortcomings. Here we report a randomised, partly-blinded, placebo-controlled trial that represents the first use in humans of the NP to deliver a vaccine. METHODS: Healthy volunteers were vaccinated once with one of the following: (1) NPs coated with split inactivated influenza virus (A/California/07/2009 [H1N1], 15 µg haemagglutinin (HA) per dose), applied to the volar forearm (NP-HA/FA), n = 15; (2) NPs coated with split inactivated influenza virus (A/California/07/2009 [H1N1], 15 µg HA per dose), applied to the upper arm (NP-HA/UA), n = 15; (3) Fluvax® 2016 containing 15 µg of the same H1N1 HA antigen injected intramuscularly (IM) into the deltoid (IM-HA/D), n = 15; (4) NPs coated with excipients only, applied to the volar forearm (NP-placebo/FA), n = 5; (5) NPs coated with excipients only applied to the upper arm (NP-placebo/UA), n = 5; or (6) Saline injected IM into the deltoid (IM-placebo/D), n = 5. Antibody responses at days 0, 7, and 21 were measured by haemagglutination inhibition (HAI) and microneutralisation (MN) assays. FINDINGS: NP vaccination was safe and acceptable; all adverse events were mild or moderate. Most subjects (55%) receiving patch vaccinations (HA or placebo) preferred the NP compared with their past experience of IM injection with N&S (preferred by 24%). The antigen-vaccinated groups had statistically higher HAI titres at day 7 and 21 compared with baseline (p < 0.0001), with no statistical differences between the treatment groups (p > 0.05), although the group sizes were small. The geometric mean HAI titres at day 21 for the NP-HA/FA, NP-HA/UA and IM-HA/D groups were: 335 (189-593 95% CI), 160 (74-345 95% CI), and 221 (129-380 95% CI) respectively. A similar pattern of responses was seen with the MN assays. Application site reactions were mild or moderate, and more marked with the influenza vaccine NPs than with the placebo or IM injection. INTERPRETATION: Influenza vaccination using the NP appeared to be safe, and acceptable in this first time in humans study, and induced similar immune responses to vaccination by IM injection.


Asunto(s)
Administración Cutánea , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/inmunología , Gripe Humana/prevención & control , Adolescente , Adulto , Anticuerpos Antivirales/sangre , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Femenino , Voluntarios Sanos , Pruebas de Inhibición de Hemaglutinación , Humanos , Vacunas contra la Influenza/efectos adversos , Inyecciones Intramusculares , Masculino , Persona de Mediana Edad , Aceptación de la Atención de Salud , Placebos/administración & dosificación , Método Simple Ciego , Vacunas de Productos Inactivados/administración & dosificación , Vacunas de Productos Inactivados/efectos adversos , Vacunas de Productos Inactivados/inmunología , Adulto Joven
6.
Hum Vaccin Immunother ; 11(7): 1673-84, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26090618

RESUMEN

The objective of this study was to explore various testing methodologies suitable for characterizing sedimented or agglomerated material. To model this, bioCSL's split influenza virus vaccine, Fluvax® was utilized. The investigation was conducted on 5 dispensed lots of commercially manufactured vaccine, formulated for the 2013 Southern Hemisphere season. Vaccine syringes were initially inspected by visual tests; the material was then aseptically pooled for characterization assessment by microscopy and several agglomeration assays. All syringes passed bioCSL's description test where any fine or large sized particles of sediment observed in the vaccine were resuspended upon shaking; inverted light microscopy verified that the sediment morphology was consistent with influenza vaccine. Electron microscopic examination of pooled vaccine material demonstrated the presence of typical influenza structures including split virus, virosomes, whole virus particles and agglomerates. An optical density turbidity assay revealed relatively high protein recoveries in the vaccine supernatant post-centrifugation treatment, thus indicative of a well-dispersed vaccine formulation. This was corroborated by particle sizing analysis using dynamic light scattering which generated reproducible volume particle size distributions of a polydisperse nature. Ultraviolet-visible absorbance profiles further confirmed the presence of some agglomerated material. Data from all methods demonstrated consistent results between all batches of vaccine. Therefore, this investigation revealed the suitability and usefulness of the various methodologies in characterizing the appearance of agglomerated vaccine material. It is suggested that such methods may be applicable and beneficial for the development of a wider spectrum of heterogeneous and agglomerated formulations to provide safe, efficacious and superior quality biopharmaceutical products.


Asunto(s)
Vacunas contra la Influenza , Humanos , Vacunas contra la Influenza/análisis , Vacunas contra la Influenza/química , Microscopía , Tamaño de la Partícula , Jeringas , Virión/ultraestructura
7.
J Virol ; 87(6): 3053-61, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23283953

RESUMEN

In preparing for the threat of a pandemic of avian H5N1 influenza virus, we need to consider the significant delay (4 to 6 months) necessary to produce a strain-matched vaccine. As some degree of cross-reactivity between seasonal influenza vaccines and H5N1 virus has been reported, this was further explored in the ferret model to determine the targets of protective immunity. Ferrets were vaccinated with two intramuscular inoculations of trivalent inactivated split influenza vaccine or subcomponent vaccines, with and without adjuvant, and later challenged with a lethal dose of A/Vietnam/1203/2004 (H5N1) influenza virus. We confirmed that vaccination with seasonal influenza vaccine afforded partial protection against lethal H5N1 challenge and showed that use of either AlPO(4) or Iscomatrix adjuvant with the vaccine resulted in complete protection against disease and death. The protection was due exclusively to the H1N1 vaccine component, and although the hemagglutinin contributed to protection, the dominant protective response was targeted toward the neuraminidase (NA) and correlated with sialic acid cleavage-inhibiting antibody titers. Purified heterologous NA formulated with Iscomatrix adjuvant was also protective. These results suggest that adjuvanted seasonal trivalent vaccine could be used as an interim measure to decrease morbidity and mortality from H5N1 prior to the availability of a specific vaccine. The data also highlight that an inducer of cross-protective immunity is the NA, a protein whose levels are not normally monitored in vaccines and whose capacity to induce immunity in recipients is not normally assessed.


Asunto(s)
Anticuerpos Antivirales/sangre , Protección Cruzada , Subtipo H5N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Neuraminidasa/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Proteínas Virales/inmunología , Adyuvantes Inmunológicos/administración & dosificación , Animales , Hurones , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Vacunas contra la Influenza/administración & dosificación , Inyecciones Intramusculares , Infecciones por Orthomyxoviridae/inmunología , Análisis de Supervivencia
8.
Influenza Other Respir Viruses ; 7(2): 191-200, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22583601

RESUMEN

BACKGROUND: The current method used to measure haemagglutinin (HA) content for influenza vaccine formulation, single radial immunodiffusion (SRID), is lengthy and relies on the availability of matched standardised homologous reagents. The 2009 influenza pandemic highlighted the need to develop alternate assays that are able to rapidly quantitate HA antigen for vaccine formulation. OBJECTIVES: The aim of this work was to develop an enzyme-linked immunoassay (EIA) for the rapid quantitation of H1, H3, H5 and B influenza HA antigens. METHODS: Monoclonal antibodies (mAbs) selected for haemagglutination inhibition (HAI) activity were conjugated with horseradish peroxidase and used to establish a capture-detection EIA for the quantitation of HA antigen. Results were compared with the appropriate reference SRID assays to investigate assay performance and utility. RESULTS: Quantitation of HA antigen by EIA correlated well with current reference SRID assays. EIA results showed equivalent precision and exhibited a similar capacity to detect HA antigen in virus samples that had been used in either stability or splitting studies, or subjected to physical or chemical stresses. EIA exhibited greater sensitivity than SRID and has the potential to be used in high-throughput applications. CONCLUSIONS: We demonstrated the utility of EIA as a suitable alternative to SRID for HA antigen quantitation and stability assessment. This approach would lead to earlier availability of both seasonal and pandemic vaccines, because of the extended cross-reactivity of reagents.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/análisis , Vacunas contra la Influenza/química , Vacunas contra la Influenza/normas , Tecnología Farmacéutica/métodos , Anticuerpos Monoclonales/aislamiento & purificación , Ensayo de Inmunoadsorción Enzimática/métodos , Peroxidasa de Rábano Silvestre/metabolismo , Humanos , Inmunodifusión/métodos
9.
Vaccine ; 30(51): 7400-6, 2012 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-23063831

RESUMEN

During the 2010 Southern Hemisphere (SH) influenza season, there was an unexpected increase in the number of febrile reactions reported in the paediatric population in Australia shortly after vaccination with the CSL 2010 trivalent influenza vaccine (TIV) compared to previous seasons. A series of scientific investigations were initiated to identify the root cause of these adverse events, including in vitro cytokine/chemokine assays following stimulation of adult and paediatric whole blood, as well as mammalian cell lines and primary cells, profiling of molecular signatures using microarrays, and in vivo studies in rabbits, ferrets, new born rats and rhesus non-human primates (NHPs). Various TIVs (approved commercial vaccines as well as re-engineered TIVs) and their individual monovalent pool harvest (MPH) components were examined in these assays and in animal models. Although the scientific investigations are ongoing, the current working hypothesis is that the increase in febrile adverse events reported in Australia after vaccination with the CSL 2010 SH TIV may be due to a combination of both the introduction of three entirely new strains in the CSL 2010 SH TIV, and differences in the manufacturing processes used to manufacture CSL TIVs compared to other licensed TIVs on the market. Identification of the causal component(s) may result in the identification of surrogate assays that can assist in the formulation of TIVs to minimise the future incidence of febrile reactions in the paediatric population.


Asunto(s)
Fiebre/inducido químicamente , Fiebre/etiología , Vacunas contra la Influenza/efectos adversos , Gripe Humana/prevención & control , Adolescente , Adulto , Animales , Australia , Células Cultivadas , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Vacunas contra la Influenza/administración & dosificación , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...