Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Theory Comput ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38978185

RESUMEN

Antibiotic resistance, particularly among Gram-negative bacteria, poses a significant healthcare challenge due to their ability to evade antibiotic action through various mechanisms. In this study, we explore the prediction of small molecule accumulation in Gram-negative bacteria by using machine learning techniques enhanced with statistical descriptors derived from molecular dynamics simulations. We begin by identifying a minimal set of molecular descriptors that maximize the model's predictive power while preserving human interpretability. We optimize model accuracy, precision, and the area under the receiver operating characteristic curve through an iterative process. We demonstrate that the inclusion of statistical descriptors significantly improves model performance across various prediction metrics. Particularly, the addition of statistical descriptors related to dipole moment and minimum projection radius enhances the model's predictive capabilities, shedding light on the physicochemical properties crucial for small molecule accumulation. Our findings highlight the importance of considering statistical moments beyond mean values in predictive modeling and suggest avenues for future research. Overall, our study provides insights into the complex dynamics of antibiotic accumulation in Escherichia coli bacterial cells, generalizable to other Gram-negative species, offering a promising approach for the discovery of effective antibacterial agents, identifying new hits, and improving them to define effective lead agents.

2.
Chemphyschem ; 25(14): e202400147, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38625051

RESUMEN

We investigated, by using all-atom molecular dynamics simulations, the effect of the outer membrane of Gram-negative bacteria, composed in the outer leaflet by polar/charged lipopolysaccharides (LPS), on the electrostatic properties of general porins from the Enterobacteriaceae family. General porins constitute the main path for the facilitated diffusion of polar antibiotics through the outer membrane. As model system we selected OmpK36 from Klebsiella pneumoniae, the ortholog of OmpC from Escherichia coli. This species presents high variability of amino acid composition of porins, with the effect to increase its resistance to the penetration of antibiotics. The various properties we analyzed seem to indicate that LPS acts as an independent layer without affecting the internal electrostatic properties of OmpK36. The only apparent effect on the microsecond time scale we sampled is the appearance of calcium ions, when present at moderate concentration in solution, inside the pore. However, we noticed increased fluctuations of the polarization density and only minor changes on its average value.


Asunto(s)
Lipopolisacáridos , Simulación de Dinámica Molecular , Porinas , Electricidad Estática , Lipopolisacáridos/química , Porinas/química , Porinas/metabolismo , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/química , Enterobacteriaceae/efectos de los fármacos , Enterobacteriaceae/química , Enterobacteriaceae/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/química
3.
Phys Chem Chem Phys ; 25(39): 26497-26506, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37772905

RESUMEN

General porins are nature's sieving machinery in the outer membrane of Gram-negative bacteria. Their unique hourglass-shaped architecture is highly conserved among different bacterial membrane proteins and other biological channels. These biological nanopores have been designed to protect the interior of the bacterial cell from leakage of toxic compounds while selectively allowing the entry of the molecules needed for cell growth and function. The mechanism of transport through porins is of utmost and direct interest for drug discovery, extending toward nanotechnology applications for blue energy, separations, and sequencing. Here we present a theoretical framework for analysing the filter of general porins in relation to translocating molecules with the aid of enhanced molecular simulations quantitatively. Using different electrostatic probes in the form of a series of related molecules, we describe the nature of this filter and how to finely tune permeability by exploiting electrostatic interactions between the pore and the translocating molecule. Eventually, we show how enhanced simulations constitute today a valid tool for characterising the mechanism and quantifying energetically the transport of molecules through nanopores.

4.
Phys Chem Chem Phys ; 25(18): 12712-12722, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37098836

RESUMEN

Transmembrane ß-barrel proteins are key systems for transport phenomena in biology. Based on their broad substrate specificity, they represent good candidates for present and future technological applications, such as DNA/RNA and protein sequencing, sensing of biomedical analytes, and production of blue energy. For a better understanding of the process at the molecular level, we applied parallel tempering simulations in the WTE ensemble to compare two ß-barrel porins from Escherichia coli, OmpF and OmpC. Our analysis showed a different behavior of the two highly homologous porins, where subtle amino acid substitutions can modulate critical properties of mass transport. Interestingly, the differences can be mapped to the respective environmental conditions under which the two porins are expressed. Apart from reporting on the advantages of the enhanced sampling methods in assessing the molecular properties of nanopores, our comparative analysis provided new and key results to better understand biological function and technical applications. Eventually, we showed how results from molecular simulations align well with experimental single-channel measurements, thus demonstrating the mature evolution of numerical methodologies for predicting properties in this field crucial for future biomedical applications.


Asunto(s)
Escherichia coli , Porinas , Escherichia coli/metabolismo , Secuencia de Aminoácidos , Porinas/química , Proteínas de la Membrana Bacteriana Externa/química , Proteínas Bacterianas/metabolismo
5.
Biochimie ; 205: 102-109, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36646205

RESUMEN

Characterizing protein-protein interaction on a single molecular level is a challenge, experimentally as well as interpretation of the data. For example, Gram-negative bacteria contain protein complexes spanning the outer and inner cell wall devoted to efflux effectively cell toxic substances. Recent seminal work revealed the high-resolution structure of such a tripartic composition TolC-AcrA-AcrB suggesting to design inhibitors preventing efflux of antibiotics. To show that electrophysiology can provide supporting information here, we reconstitute single TolC homotrimer into a planar lipid membrane, apply a transmembrane voltage and follow the assembly of AcrA to TolC using the modulation of the ion current through TolC channel during binding. In particular, the presence of AcrA in solution increases the average ionic current through TolC and, moreover, reduces the ion-current fluctuations caused by flickering of TolC. Here, we show that statistical properties of ion-current fluctuations (the power spectral density) provide a complementary measure of the interaction of the TolC-AcrA complex in presence of putative efflux pump inhibitors. Both characteristics, the average ion current across TolC and the current noise, taken into consideration together, point to a stiffening of the tip of TolC which might reduce the formation of the complex.


Asunto(s)
Proteínas de Escherichia coli , Proteínas de Transporte de Membrana , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Electrofisiología , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/química , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/farmacología , Lipoproteínas/metabolismo
6.
Biomol Concepts ; 14(1)2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38167297

RESUMEN

10B isotopes have been almost exclusively used in the neutron-capture radiation therapy (NCT) of cancer for decades. We have identified two other nuclides suitable for radiotherapy, which have ca. ten times larger cross section of absorption for neutrons and emit heavy charged particles. This would provide several key advantages for potential NCT, such as the possibility to use a lower nuclide concentration in the target tissues or a lower neutron irradiation flux. By detecting the characteristic γ radiation from the spontaneous decay of the radionuclides, one can image their biodistribution. These advantages could open up new possibilities for NCT applications as a safer and more efficient cancer therapy.


Asunto(s)
Neoplasias , Radioisótopos , Humanos , Distribución Tisular , Radioisótopos/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/radioterapia , Neutrones
7.
Antibiotics (Basel) ; 11(7)2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35884094

RESUMEN

We investigated the diffusion of three cyclic boronates formulated as beta-lactamase inhibitors through the porin OmpF to evaluate their potential to cross OM via the porin pathway. The three nonbeta-lactam molecules diffuse through the porin eyelet region with the same mechanism observed for beta-lactam molecules and diazobicyclooctan derivatives, with the electric dipole moment aligned with the transversal electric field. In particular, the BOH group can interact with both the basic ladder and the acidic loop L3, which is characteristic of the size-constricted region of this class of porins. On one hand, we confirm that the transport of small molecules through enterobacter porins has a common general mechanism; on the other, the class of cyclic boronate molecules does not seem to have particular difficulties in diffusing through enterobacter porins, thus representing a good scaffold for new anti-infectives targeting Gram-negative bacteria research.

8.
Biomol Concepts ; 13(1): 207-219, 2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35417112

RESUMEN

Passive transport of molecules through nanopores is characterized by the interaction of molecules with pore internal walls and by a general crowding effect due to the constricted size of the nanopore itself, which limits the presence of molecules in its interior. The molecule-pore interaction is treated within the diffusion approximation by introducing the potential of mean force and the local diffusion coefficient for a correct statistical description. The crowding effect can be handled within the Markov state model approximation. By combining the two methods, one can deal with complex free energy surfaces taking into account crowding effects. We recapitulate the equations bridging the two models to calculate passive currents assuming a limited occupancy of the nanopore in a wide range of molecular concentrations. Several simple models are analyzed to clarify the consequences of the model. Eventually, a biologically relevant case of transport of an antibiotic molecule through a bacterial porin is used to draw conclusions (i) on the effects of crowding on transport of small molecules through biological channels, and (ii) to demonstrate its importance for modelling of cellular transport.


Asunto(s)
Nanoporos
9.
Phys Chem Chem Phys ; 23(34): 18461-18474, 2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34612386

RESUMEN

Subcellular and organellar mechanisms have manifested a prominent importance for a broad variety of processes that maintain cellular life at its most basic level. Mammalian two-pore channels (TPCs) appear to be cornerstones of these processes in endo-lysosomes by controlling delicate ion-concentrations in their interiors. With evolutionary remarkable architecture and one-of-a-kind selectivity filter, TPCs are an extremely attractive topic per se. In the light of the current COVID-19 pandemic, hTPC2 emerges to be more than attractive. As a key regulator of the endocytosis pathway, it is potentially essential for diverse viral infections in humans, as demonstrated. Here, by means of multiscale molecular simulations, we propose a model of sodium transport from the lumen to the cytosol where the central cavity works as a reservoir. Since the inhibition of hTPC2 is proven to stop SARS-CoV2 in vitro, shedding light on the hTPC2 function and mechanism is the first step towards the selection of potential inhibiting candidates.


Asunto(s)
Activación del Canal Iónico , Canales Iónicos Activados por Ligandos/fisiología , Sodio/metabolismo , COVID-19 , Canales Iónicos Activados por Ligandos/metabolismo , Ligandos , SARS-CoV-2/aislamiento & purificación
10.
Structure ; 29(11): 1279-1285.e3, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34265277

RESUMEN

Bacterial surface layers are paracrystalline assemblies of proteins that provide the first line of defense against environmental shocks. Here, we report the 3D structure, in situ localization, and orientation of the S-layer deinoxanthin-binding complex (SDBC), a hetero-oligomeric assembly of proteins that in Deinococcus radiodurans represents the main S-layer unit. The SDBC is resolved at 11-Å resolution by single-particle analysis, while its in situ localization is determined by cryo-electron crystallography on intact cell-wall fragments leading to a projection map at 4.5-Å resolution. The SDBC exhibits a triangular base with three comma-shaped pores, and a stalk departing orthogonally from the center of the base and oriented toward the intracellular space. Combining state-of-the-art techniques, results show the organization of this S-layer and its connection within the underlying membranes, demonstrating the potential for applications from nanotechnologies to medicine.


Asunto(s)
Proteínas Bacterianas/metabolismo , Pared Celular/metabolismo , Deinococcus/metabolismo , Glicoproteínas de Membrana/metabolismo , Conformación Proteica
11.
Antibiotics (Basel) ; 10(6)2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34073313

RESUMEN

The lack of new drugs for Gram-negative pathogens is a global threat to modern medicine. The complexity of their cell envelope, with an additional outer membrane, hinders internal accumulation and thus, the access of molecules to their targets. Our limited understanding of the molecular basis for compound influx and efflux from these pathogens is a major bottleneck for the discovery of effective antibacterial compounds. Here we analyse the correlation between the whole-cell compound accumulation of ~200 molecules and their predicted porin permeability coefficient (influx), using a recently developed scoring function. We found a strong linear relationship (74%) between the two, confirming porins key in compound uptake in Gram-negative bacteria. The analysis of this unique dataset aids to better understand the molecular descriptors behind whole-cell accumulation and molecular uptake in Gram-negative bacteria.

12.
J Nanosci Nanotechnol ; 21(5): 2939-2942, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33653462

RESUMEN

The research on new radiopharmaceuticals for therapy of cancer is evolving rapidly. Thanks to novel technologies and new selective and less toxic compounds, we move towards personalized molecular medicine. The neutron capture radiation therapy (NCT) can be potentially much safer and can offer a better spatial and temporal control than the radioisotope therapy. Still, there are not many options in NCT: the 10B isotope has been almost exclusively used for decades, and only recently, 157Gd has attracted some interest. Here, we want to draw attention to a new nuclide, 7Be, recently suggested for the NCT, and discuss perspective of Be2+ confinement in aqueous solutions and targeted delivery to cancerous tissues.

13.
Molecules ; 25(23)2020 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-33291474

RESUMEN

Modern medicine relies upon antibiotics, but we have arrived to the point where our inability to come up with new effective molecules against resistant pathogens, together with the declining private investment, is resulting in the number of untreatable infections increasing worldwide at worrying pace. Among other pathogens, widely recognized institutions have indicated Gram-negative bacteria as particularly challenging, due to the presence of the outer membrane. The very first step in the action of every antibiotic or adjuvant is the permeation through this membrane, with small hydrophilic drugs usually crossing through protein channels. Thus, a detailed understanding of their properties at a molecular level is crucial. By making use of Molecular Dynamics simulations, we compared the two main porins of four members of the Enterobacteriaceae family, and, in this paper, we show their shared geometrical and electrostatic characteristics. Then, we used metadynamics simulations to reconstruct the free energy for permeation of selected diazobicyclooctans through OmpF. We demonstrate how porins features are coupled to those of the translocating species, modulating their passive permeation. In particular, we show that the minimal projection area of a molecule is a better descriptor than its molecular mass or the volume. Together with the magnitude and orientation of the electric dipole moment, these are the crucial parameters to gain an efficient compensation between the entropic and enthalpic contributions to the free energy barrier required for permeation. Our results confirm the possibility to predict the permeability of molecules through porins by using a few molecular parameters and bolster the general model according to which the free energy increase is mostly due to the decrease of conformational entropy, and this can be compensated by a favorable alignment of the electric dipole with respect to the channel intrinsic electric field.


Asunto(s)
Permeabilidad de la Membrana Celular/fisiología , Bacterias Gramnegativas/metabolismo , Porinas/metabolismo , Inhibidores de beta-Lactamasas/metabolismo , Antibacterianos/metabolismo , Enterobacteriaceae/metabolismo , Simulación de Dinámica Molecular , Electricidad Estática
14.
Phys Chem Chem Phys ; 22(27): 15664-15674, 2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-32618303

RESUMEN

In the last decade two-pore intracellular channels (TPCs) attracted the interest of researchers, still some key questions remain open. Their importance for vacuolar (plants) and endo-lysosomal (animals) function highlights them as a very attractive system to study, both theoretically and experimentally. Indicated as key players in the trafficking of the cell, today they are considered a new potential target for avoiding virus infections, including those from coronaviruses. A particular boost for theoretical examinations has been made with recent high-resolution X-ray and cryo-EM structures. These findings have opened the way for efficient and precise computational studies at the atomistic level. Here we report a set of multiscale-calculations performed on the mTPC1, a ligand- and voltage-gated sodium selective channel. The molecular dynamics and enhanced molecular dynamics simulations were used for a thorough analysis of the mammalian TPC1 behaviour in the presence and absence of the ligand molecule, with a special accent on the supposed bottleneck, the hydrophobic gate. Moreover, from the reconstructed free energy obtained from enhanced simulations, we have calculated the macroscopic conductance of sodium ions through the mTPC1, which we compared with measured single-channel conductance values. The hydrophobic gate works as a steric barrier and the key parameters are its flexibility and the dimension of the sodium first hydration shell.


Asunto(s)
Canales de Calcio/química , Simulación del Acoplamiento Molecular , Animales , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Activación del Canal Iónico , Ligandos , Ratones
15.
ACS Infect Dis ; 6(7): 1855-1865, 2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32369342

RESUMEN

Despite decades of therapeutic application of aminoglycosides, it is still a matter of debate if porins contribute to the translocation of the antibiotics across the bacterial outer membrane. Here, we quantified the uptake of kanamycin across the major porin channels OmpF and OmpC present in the outer membrane of Escherichia coli. Our analysis revealed that, despite its relatively large size, about 10-20 kanamycin molecules per second permeate through OmpF and OmpC under a 10 µM concentration gradient, whereas OmpN does not allow the passage. Molecular simulations elucidate the uptake mechanism of kanamycin through these porins. Whole-cell studies with a defined set of E. coli porin mutants provide evidence that translocation of kanamycin via porins is relevant for antibiotic potency. The values are discussed with respect to other antibiotics.


Asunto(s)
Escherichia coli , Kanamicina , Antibacterianos/farmacología , Proteínas de la Membrana Bacteriana Externa/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Porinas/genética
16.
J Biol Chem ; 295(13): 4224-4236, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32071085

RESUMEN

In the extremophile bacterium Deinococcus radiodurans, the outermost surface layer is tightly connected with the rest of the cell wall. This integrated organization provides a compact structure that shields the bacterium against environmental stresses. The fundamental unit of this surface layer (S-layer) is the S-layer deinoxanthin-binding complex (SDBC), which binds the carotenoid deinoxanthin and provides both, thermostability and UV radiation resistance. However, the structural organization of the SDBC awaits elucidation. Here, we report the isolation of the SDBC with a gentle procedure consisting of lysozyme treatment and solubilization with the nonionic detergent n-dodecyl-ß-d-maltoside, which preserved both hydrophilic and hydrophobic components of the SDBC and allows the retention of several minor subunits. As observed by low-resolution single-particle analysis, we show that the complex possesses a porin-like structural organization, but is larger than other known porins. We also noted that the main SDBC component, the protein DR_2577, shares regions of similarity with known porins. Moreover, results from electrophysiological assays with membrane-reconstituted SDBC disclosed that it is a nonselective channel that has some peculiar gating properties, but also exhibits behavior typically observed in pore-forming proteins, such as porins and ionic transporters. The functional properties of this system and its porin-like organization provide information critical for understanding ion permeability through the outer cell surface of S-layer-carrying bacterial species.


Asunto(s)
Proteínas Bacterianas/química , Deinococcus/química , Glicoproteínas de Membrana/química , Complejos Multiproteicos/química , Proteínas Bacterianas/genética , Carotenoides/química , Membrana Celular/química , Pared Celular/química , Deinococcus/genética , Complejos Multiproteicos/genética , Porinas/química , Unión Proteica/genética
17.
Nat Rev Microbiol ; 18(3): 164-176, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31792365

RESUMEN

Gram-negative bacteria and their complex cell envelope, which comprises an outer membrane and an inner membrane, are an important and attractive system for studying the translocation of small molecules across biological membranes. In the outer membrane of Enterobacteriaceae, trimeric porins control the cellular uptake of small molecules, including nutrients and antibacterial agents. The relatively slow porin-mediated passive uptake across the outer membrane and active efflux via efflux pumps in the inner membrane creates a permeability barrier. The synergistic action of outer membrane permeability, efflux pump activities and enzymatic degradation efficiently reduces the intracellular concentrations of small molecules and contributes to the emergence of antibiotic resistance. In this Review, we discuss recent advances in our understanding of the molecular and functional roles of general porins in small-molecule translocation in Enterobacteriaceae and consider the crucial contribution of porins in antibiotic resistance.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Membrana Celular/metabolismo , Enterobacteriaceae/enzimología , Enterobacteriaceae/metabolismo , Porinas/metabolismo , Antibacterianos/metabolismo , Transporte Biológico , Farmacorresistencia Bacteriana , Enterobacteriaceae/efectos de los fármacos
18.
J Chem Phys ; 150(21): 211102, 2019 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-31176312

RESUMEN

We present a statistical model for solving and predicting the transport of large molecules through small flexible channels. The average radius of the channel and the average radius of the molecule are the only two quantities determining the steric part of the potential of mean force for the translocation, in the case of a small rigid particle and a large rigid channel: the barrier is completely entropic and is described by the Fick-Jacobs model. However, the flexibility of the channel's cross section and that of the molecule's size have a significant effect on transport, especially when a large molecule goes through a narrow channel. In this case, the steric barrier changes its statistical nature becoming enthalpic, and we predict a strong temperature enhancement of the diffusion current through the channel. The flexibility is described in terms of the equilibrium fluctuations of the channel and of the molecule. The model is compared with the all-atom MD simulations of the transport of hard spheres of various radii and of drug molecules through a biological nanochannel. For the case of Gaussian fluctuations, we derived a simple analytical expression for the steric barrier, which can be quantified using average size and fluctuations of the channel and of the molecule.

19.
Phys Chem Chem Phys ; 21(16): 8457-8463, 2019 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-30951074

RESUMEN

Deciphering the transport through outer-membrane porins is crucial to understand how anti-infectives enter Gram-negative bacteria and perform their function. Here we elucidated the transport mechanism of substrates through the Pseudomonads sugar-specific porin OprB by means of multiscale modeling. We used molecular dynamics simulations to quantify the energetics of transport and thus a diffusion model to quantify the macroscopic flux of molecules through OprB. Our results show that Trp171 and several glutamate residues in the constriction region are key for the transport of glucose, the preferred natural substrate, through OprB. The unveiled transport mechanism suggests that 2-acetamido-1,2-dideoxynojirimycin (DNJ-NAc), an anti-infective structurally similar to glucose, can enter the cell via OprB. We quantified its energetics and macroscopic flux through OprB providing a comparative analysis with the natural substrate. Thus this pore can be considered as a promising gateway for exploiting the Trojan Horse strategy in pathogenic bacteria.


Asunto(s)
Proteínas Bacterianas/metabolismo , Glucosa/metabolismo , Porinas/metabolismo , Infecciones por Pseudomonas/microbiología , Pseudomonas putida/metabolismo , Antiinfecciosos/metabolismo , Proteínas Bacterianas/química , Transporte Biológico , Humanos , Modelos Moleculares , Porinas/química , Conformación Proteica , Pseudomonas putida/química , Especificidad por Sustrato
20.
ACS Infect Dis ; 4(10): 1519-1528, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30039960

RESUMEN

Understanding molecular properties of outer membrane channels of Gram-negative bacteria is of fundamental significance as they are the entry point of polar antibiotics into bacteria. Outer membrane proteomics revealed OccK8 (OprE) to be among the five most expressed substrate specific channels of the clinically important Pseudomonas aeruginosa. The high-resolution X-ray structure and electrophysiology highlighted a very narrow pore. However, experimental in vitro methods showed the transport of natural amino acids and antibiotics, among them ceftazidime. We used molecular dynamics simulations to reveal the importance of the physicochemical properties of ceftazidime in modulating the translocation through OccK8, proposing a structure-function relationship. As in general porins, the internal electric field favors the translocation of polar molecules by gainful energy compensation in the central constriction region. Importantly, the comparatively narrow OccK8 pore can undergo a substrate-induced expansion to accommodate relatively large-sized substrates.


Asunto(s)
Antibacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Ceftazidima/metabolismo , Bacterias Gramnegativas/metabolismo , Porinas/metabolismo , Pseudomonas aeruginosa/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/clasificación , Permeabilidad de la Membrana Celular , Cristalografía por Rayos X , Liposomas/metabolismo , Potenciales de la Membrana , Simulación de Dinámica Molecular , Porinas/química , Porinas/clasificación , Estructura Secundaria de Proteína , Transporte de Proteínas , Electricidad Estática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA