Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 1251, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38341437

RESUMEN

Organismal functional strategies form a continuum from slow- to fast-growing organisms, in response to common drivers such as resource availability and disturbance. However, whether there is synchronisation of these strategies at the entire community level is unclear. Here, we combine trait data for >2800 above- and belowground taxa from 14 trophic guilds spanning a disturbance and resource availability gradient in German grasslands. The results indicate that most guilds consistently respond to these drivers through both direct and trophically mediated effects, resulting in a 'slow-fast' axis at the level of the entire community. Using 15 indicators of carbon and nutrient fluxes, biomass production and decomposition, we also show that fast trait communities are associated with faster rates of ecosystem functioning. These findings demonstrate that 'slow' and 'fast' strategies can be manifested at the level of whole communities, opening new avenues of ecosystem-level functional classification.


Asunto(s)
Biodiversidad , Ecosistema , Biomasa , Agricultura , Suelo
2.
Environ Sci Technol ; 57(10): 4122-4132, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36853970

RESUMEN

The aim of this study was to perform a phytoscreening of per- and polyfluoroalkyl substances (PFAS) at a contaminated site in Germany, to investigate the applicability of this technique for PFAS contaminations. Foliage of three species, namely, white willow (Salix alba L.), black poplar (Populus nigra L.), and black alder (Alnus glutinosa L.), were sampled to evaluate seasonal and annual variations in PFAS concentrations. The results of the phytoscreening clearly indicated species and specific differences, with the highest PFAS sum concentrations ∑23 observed in October for white willow (0-1800 µg kg-1), followed by black poplar (6.7-32 µg kg-1) and black alder (0-13 µg kg-1). The bulk substances in leaves were highly mobile short-chain perfluoroalkyl carboxylic acids (PFCAs). In contrast, the PFAS composition in soil was dominated by long-chain PFCAs, perfluorooctanoic acid (PFOA) and perfluorodecanoic acid (PFDA), as a result of the lower mobility with ∑23PFAS ranging between 0.18 and 26 µg L-1 (eluate) and between 66 and 420 µg kg-1 (solid). However, the PFAS composition in groundwater was comparable to the spectrum observed in leaves. Spatial interpolations of PFAS in groundwater and foliage correspond well and demonstrate the successful application of phytoscreening to detect and delineate the impact of the studied PFAS on groundwater.


Asunto(s)
Ácidos Alcanesulfónicos , Monitoreo del Ambiente , Fluorocarburos , Agua Subterránea , Contaminantes Químicos del Agua , Ácidos Alcanesulfónicos/análisis , Ácidos Carboxílicos , Fluorocarburos/análisis , Alemania , Contaminantes Químicos del Agua/análisis
3.
Nat Ecol Evol ; 7(2): 236-249, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36376602

RESUMEN

The impact of local biodiversity loss on ecosystem functioning is well established, but the role of larger-scale biodiversity dynamics in the delivery of ecosystem services remains poorly understood. Here we address this gap using a comprehensive dataset describing the supply of 16 cultural, regulating and provisioning ecosystem services in 150 European agricultural grassland plots, and detailed multi-scale data on land use and plant diversity. After controlling for land-use and abiotic factors, we show that both plot-level and surrounding plant diversity play an important role in the supply of cultural and aboveground regulating ecosystem services. In contrast, provisioning and belowground regulating ecosystem services are more strongly driven by field-level management and abiotic factors. Structural equation models revealed that surrounding plant diversity promotes ecosystem services both directly, probably by fostering the spill-over of ecosystem service providers from surrounding areas, and indirectly, by maintaining plot-level diversity. By influencing the ecosystem services that local stakeholders prioritized, biodiversity at different scales was also shown to positively influence a wide range of stakeholder groups. These results provide a comprehensive picture of which ecosystem services rely most strongly on biodiversity, and the respective scales of biodiversity that drive these services. This key information is required for the upscaling of biodiversity-ecosystem service relationships, and the informed management of biodiversity within agricultural landscapes.


Asunto(s)
Biodiversidad , Ecosistema , Agricultura/métodos , Plantas
4.
J Agric Food Chem ; 70(45): 14329-14338, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36323308

RESUMEN

In this study, 6:2 and 8:2 polyfluoroalkyl phosphate diester (diPAP) were individually investigated in lysimeters under near-natural conditions. Leachate was sampled for 2 years, as was the soil after the experiment. In the leachate of the diPAP-spiked soils, perfluorocarboxylic acids (PFCAs) of different chain lengths were detected [23.2% (6:2 diPAP variant) and 20.8% (8:2 diPAP variant) of the initially applied molar amount]. After 2 years, the soils still contained 36-37% 6:2 diPAP and 41-45% 8:2 diPAP, respectively, in addition to smaller amounts of PFCAs (1.5 and 10.6%, respectively). Amounts of PFCAs found in the grass were low (<0.1% in both variants). The recovery rate of both 6:2 diPAP and 8:2 diPAP did not reach 100% (63.9 and 83.2%, respectively). The transformation of immobile diPAPs into persistent mobile PFCAs and their transport into the groundwater shows a pathway for human exposure to hazardous PFCAs through drinking water and irrigation of crops.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Humanos , Fosfatos/metabolismo , Fluorocarburos/análisis , Organofosfatos/metabolismo , Suelo , Productos Agrícolas/metabolismo
5.
New Phytol ; 236(5): 1936-1950, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36128644

RESUMEN

Plant-soil feedbacks (PSFs) underlying grassland plant richness and productivity are typically coupled with nutrient availability; however, we lack understanding of how restoration measures to increase plant diversity might affect PSFs. We examined the roles of sward disturbance, seed addition and land-use intensity (LUI) on PSFs. We conducted a disturbance and seed addition experiment in 10 grasslands along a LUI gradient and characterized plant biomass and richness, soil microbial biomass, community composition and enzyme activities. Greater plant biomass at high LUI was related to a decrease in the fungal to bacterial ratios, indicating highly productive grasslands to be dominated by bacteria. Lower enzyme activity per microbial biomass at high plant species richness indicated a slower carbon (C) cycling. The relative abundance of fungal saprotrophs decreased, while pathogens increased with LUI and disturbance. Both fungal guilds were negatively associated with plant richness, indicating the mechanisms underlying PSFs depended on LUI. We show that LUI and disturbance affect fungal functional composition, which may feedback on plant species richness by impeding the establishment of pathogen-sensitive species. Therefore, we highlight the need to integrate LUI including its effects on PSFs when planning for practices that aim to optimize plant diversity and productivity.


Asunto(s)
Biodiversidad , Pradera , Plantas , Biomasa , Suelo , Bacterias , Ecosistema
6.
Environ Toxicol Chem ; 41(9): 2065-2077, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35751449

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are environmentally ubiquitous, anthropogenic substances with adverse effects on organisms, which shows the need to study their environmental fate and leaching behavior. In the present soil columns study, the leaching behavior and fate of nontransformable and transformable (precursors) were investigated. Ten nontransformable PFAS in two different soils, two precursors and two field soils, which were already contaminated with a mixture of PFAS, and two uncontaminated controls, were set up for a time span of 2 years. At the end of the study, the molecular balance could not be closed for nontransformable PFAS. This effect was positively correlated to the fluorinated carbon chain length. The precursors, which were both polyfluoroalkyl phosphate diesters (diPAP), had different transformation products and transformation rates, with a higher rate for 6:2 diPAP than 8:2 diPAP. After 2 years, amounts of diPAP were still found in the soil with no significant vertical movement, showing high adsorption to soils. Transformation products were estimated to be simultaneously formed. They were predominantly found in the percolation water; the amounts left in soil were negligible. Up to half of the initial precursor amounts could not be balanced and were considered missing amounts. The results of contaminated field soil experiments showed the challenge to estimate PFAS leaching without knowing all occurring precursors and complex transformation dynamics. For this purpose, it was shown that a broad examination of contaminated soil with different analytical methods can help with qualitative estimations of leaching risks. For a better quantitative estimation, analytical determination of more PFAS and a quantification of the missing amounts are needed. Environ Toxicol Chem 2022;41:2065-2077. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Fluorocarburos , Contaminantes del Suelo , Contaminantes Químicos del Agua , Organofosfatos , Fosfatos , Suelo/química , Contaminantes Químicos del Agua/análisis
7.
Front Microbiol ; 13: 715637, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35185839

RESUMEN

Acidobacteria occur in a large variety of ecosystems worldwide and are particularly abundant and highly diverse in soils. In spite of their diversity, only few species have been characterized to date which makes Acidobacteria one of the most poorly understood phyla among the domain Bacteria. We used a culture-independent niche modeling approach to elucidate ecological adaptations and their evolution for 4,154 operational taxonomic units (OTUs) of Acidobacteria across 150 different, comprehensively characterized grassland soils in Germany. Using the relative abundances of their 16S rRNA gene transcripts, the responses of active OTUs along gradients of 41 environmental variables were modeled using hierarchical logistic regression (HOF), which allowed to determine values for optimum activity for each variable (niche optima). By linking 16S rRNA transcripts to the phylogeny of full 16S rRNA gene sequences, we could trace the evolution of the different ecological adaptations during the diversification of Acidobacteria. This approach revealed a pronounced ecological diversification even among acidobacterial sister clades. Although the evolution of habitat adaptation was mainly cladogenic, it was disrupted by recurrent events of convergent evolution that resulted in frequent habitat switching within individual clades. Our findings indicate that the high diversity of soil acidobacterial communities is largely sustained by differential habitat adaptation even at the level of closely related species. A comparison of niche optima of individual OTUs with the phenotypic properties of their cultivated representatives showed that our niche modeling approach (1) correctly predicts those physiological properties that have been determined for cultivated species of Acidobacteria but (2) also provides ample information on ecological adaptations that cannot be inferred from standard taxonomic descriptions of bacterial isolates. These novel information on specific adaptations of not-yet-cultivated Acidobacteria can therefore guide future cultivation trials and likely will increase their cultivation success.

8.
Nat Commun ; 12(1): 4431, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34290234

RESUMEN

Experiments showed that biodiversity increases grassland productivity and nutrient exploitation, potentially reducing fertiliser needs. Enhancing biodiversity could improve P-use efficiency of grasslands, which is beneficial given that rock-derived P fertilisers are expected to become scarce in the future. Here, we show in a biodiversity experiment that more diverse plant communities were able to exploit P resources more completely than less diverse ones. In the agricultural grasslands that we studied, management effects either overruled or modified the driving role of plant diversity observed in the biodiversity experiment. Nevertheless, we show that greater above- (plants) and belowground (mycorrhizal fungi) biodiversity contributed to tightening the P cycle in agricultural grasslands, as reduced management intensity and the associated increased biodiversity fostered the exploitation of P resources. Our results demonstrate that promoting a high above- and belowground biodiversity has ecological (biodiversity protection) and economical (fertiliser savings) benefits. Such win-win situations for farmers and biodiversity are crucial to convince farmers of the benefits of biodiversity and thus counteract global biodiversity loss.


Asunto(s)
Agricultura/métodos , Biodiversidad , Pradera , Fósforo/metabolismo , Agricultura/economía , Biomasa , Fertilizantes/economía , Análisis de Clases Latentes , Micorrizas/clasificación , Micorrizas/metabolismo , Fósforo/análisis , Fósforo/economía , Plantas/clasificación , Plantas/metabolismo , Plantas/microbiología , Suelo/química , Microbiología del Suelo
9.
Glob Chang Biol ; 27(4): 929-940, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33135275

RESUMEN

Aerated topsoils are important sinks for atmospheric methane (CH4 ) via oxidation by CH4 -oxidizing bacteria (MOB). However, intensified management of grasslands and forests may reduce the CH4 sink capacity of soils. We investigated the influence of grassland land-use intensity (150 sites) and forest management type (149 sites) on potential atmospheric CH4 oxidation rates (PMORs) and the abundance and diversity of MOB (with qPCR) in topsoils of three temperate regions in Germany. PMORs measurements in microcosms under defined conditions yielded approximately twice as much CH4 oxidation in forest than in grassland soils. High land-use intensity of grasslands had a negative effect on PMORs (-40%) in almost all regions and fertilization was the predominant factor of grassland land-use intensity leading to PMOR reduction by 20%. In contrast, forest management did not affect PMORs in forest soils. Upland soil cluster (USC)-α was the dominant group of MOBs in the forests. In contrast, USC-γ was absent in more than half of the forest soils but present in almost all grassland soils. USC-α abundance had a direct positive effect on PMOR in forest, while in grasslands USC-α and USC-γ abundance affected PMOR positively with a more pronounced contribution of USC-γ than USC-α. Soil bulk density negatively influenced PMOR in both forests and grasslands. We further found that the response of the PMORs to pH, soil texture, soil water holding capacity and organic carbon and nitrogen content differ between temperate forest and grassland soils. pH had no direct effects on PMOR, but indirect ones via the MOB abundances, showing a negative effect on USC-α, and a positive on USC-γ abundance. We conclude that reduction in grassland land-use intensity and afforestation has the potential to increase the CH4 sink function of soils and that different parameters determine the microbial methane sink in forest and grassland soils.


Asunto(s)
Metano , Suelo , Bosques , Alemania , Pradera , Metano/análisis , Microbiología del Suelo
10.
Proc Natl Acad Sci U S A ; 117(45): 28140-28149, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33093203

RESUMEN

Land-use intensification can increase provisioning ecosystem services, such as food and timber production, but it also drives changes in ecosystem functioning and biodiversity loss, which may ultimately compromise human wellbeing. To understand how changes in land-use intensity affect the relationships between biodiversity, ecosystem functions, and services, we built networks from correlations between the species richness of 16 trophic groups, 10 ecosystem functions, and 15 ecosystem services. We evaluated how the properties of these networks varied across land-use intensity gradients for 150 forests and 150 grasslands. Land-use intensity significantly affected network structure in both habitats. Changes in connectance were larger in forests, while changes in modularity and evenness were more evident in grasslands. Our results show that increasing land-use intensity leads to more homogeneous networks with less integration within modules in both habitats, driven by the belowground compartment in grasslands, while forest responses to land management were more complex. Land-use intensity strongly altered hub identity and module composition in both habitats, showing that the positive correlations of provisioning services with biodiversity and ecosystem functions found at low land-use intensity levels, decline at higher intensity levels. Our approach provides a comprehensive view of the relationships between multiple components of biodiversity, ecosystem functions, and ecosystem services and how they respond to land use. This can be used to identify overall changes in the ecosystem, to derive mechanistic hypotheses, and it can be readily applied to further global change drivers.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Ecosistema , Modelos Biológicos , Bosques , Pradera
11.
Front Microbiol ; 11: 1391, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32695081

RESUMEN

Spatial and temporal processes shaping microbial communities are inseparably linked but rarely studied together. By Illumina 16S rRNA sequencing, we monitored soil bacteria in 360 stations on a 100 square meter plot distributed across six intra-annual samplings in a rarely managed, temperate grassland. Using a multi-tiered approach, we tested the extent to which stochastic or deterministic processes influenced the composition of local communities. A combination of phylogenetic turnover analysis and null modeling demonstrated that either homogenization by unlimited stochastic dispersal or scenarios, in which neither stochastic processes nor deterministic forces dominated, explained local assembly processes. Thus, the majority of all sampled communities (82%) was rather homogeneous with no significant changes in abundance-weighted composition. However, we detected strong and uniform taxonomic shifts within just nine samples in early summer. Thus, community snapshots sampled from single points in time or space do not necessarily reflect a representative community state. The potential for change despite the overall homogeneity was further demonstrated when the focus shifted to the rare biosphere. Rare OTU turnover, rather than nestedness, characterized abundance-independent ß-diversity. Accordingly, boosted generalized additive models encompassing spatial, temporal and environmental variables revealed strong and highly diverse effects of space on OTU abundance, even within the same genus. This pure spatial effect increased with decreasing OTU abundance and frequency, whereas soil moisture - the most important environmental variable - had an opposite effect by impacting abundant OTUs more than the rare ones. These results indicate that - despite considerable oscillation in space and time - the abundant and resident OTUs provide a community backbone that supports much higher ß-diversity of a dynamic rare biosphere. Our findings reveal complex interactions among space, time, and environmental filters within bacterial communities in a long-established temperate grassland.

12.
Environ Microbiol ; 22(3): 873-888, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31087598

RESUMEN

Soils provide a heterogeneous environment varying in space and time; consequently, the biodiversity of soil microorganisms also differs spatially and temporally. For soil microbes tightly associated with plant roots, such as arbuscular mycorrhizal fungi (AMF), the diversity of plant partners and seasonal variability in trophic exchanges between the symbionts introduce additional heterogeneity. To clarify the impact of such heterogeneity, we investigated spatiotemporal variation in AMF diversity on a plot scale (10 × 10 m) in a grassland managed at low intensity in southwest Germany. AMF diversity was determined using 18S rDNA pyrosequencing analysis of 360 soil samples taken at six time points within a year. We observed high AMF alpha- and beta-diversity across the plot and at all investigated time points. Relationships were detected between spatiotemporal variation in AMF OTU richness and plant species richness, root biomass, minimal changes in soil texture and pH. The plot was characterized by high AMF turnover rates with a positive spatiotemporal relationship for AMF beta-diversity. However, environmental variables explained only ≈20% of the variation in AMF communities. This indicates that the observed spatiotemporal richness and community variability of AMF was largely independent of the abiotic environment, but related to plant properties and the cooccurring microbiome.


Asunto(s)
Biodiversidad , Pradera , Micorrizas/fisiología , Microbiología del Suelo , Biomasa , Alemania , Micorrizas/genética , Raíces de Plantas/microbiología , Plantas/microbiología , ARN Ribosómico 18S/genética , Estaciones del Año , Suelo/química
13.
Environ Microbiol ; 22(3): 917-933, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31325219

RESUMEN

Bacteria colonize reactive minerals in soils where they contribute to mineral weathering and transformation. So far, the specificity, patterns and dynamics of mineral colonization have rarely been assessed under natural conditions. High throughput Illumina sequencing was employed to investigate the bacterial communities assembling on illite and goethite during exposure to natural grassland soils. Two different types of organic carbon sources, simple carbon compounds representing root exudates and detritus of two dominant grassland plant species were applied, and their effects on the temporal dynamics of bacterial communities were investigated. The observed temporal patterns suggest that the surfaces of de novo exposed minerals in soils drive the establishment of bacterial communities and override the effect of the type of carbon sources and of other environmental properties. Mineral colonization was selective and specific bacterial sequence variants exhibited distinct colonization patterns, among which early, intermittent, and late colonizers could be distinguished. Based on our results, soil minerals are not only colonized by specific bacterial communities but enable a succession of different bacterial communities. Our results thereby expand the concept of the mineralosphere and provide novel insights into mechanisms of community assembly in the soil ecosystem.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Pradera , Minerales , Microbiología del Suelo , Suelo/química , Bacterias/genética , Ecosistema , Plantas/microbiología , ARN Ribosómico 16S/genética
14.
Front Microbiol ; 10: 1332, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31244819

RESUMEN

Soil protists are increasingly appreciated as essential components of soil foodwebs; however, there is a dearth of information on the factors structuring their communities. Here we investigate the importance of different biotic and abiotic factors as key drivers of spatial and seasonal distribution of protistan communities. We conducted an intensive survey of a 10 m2 grassland plot in Germany, focusing on a major group of protists, the Cercozoa. From 177 soil samples, collected from April to November, we obtained 694 Operational Taxonomy Units representing >6 million Illumina reads. All major cercozoan taxonomic and functional groups were present, dominated by the small flagellates of the Glissomonadida. We found evidence of environmental selection structuring the cercozoan communities both spatially and seasonally. Spatial analyses indicated that communities were correlated within a range of 3.5 m. Seasonal variations in the abundance of bacterivores and bacteria, followed by that of omnivores suggested a dynamic prey-predator succession. The most influential edaphic properties were moisture and clay content, which differentially affected each functional group. Our study is based on an intense sampling of protists at a small scale, thus providing a detailed description of the biodiversity of different taxa/functional groups and the ecological processes involved in shaping their distribution.

15.
PLoS One ; 12(3): e0173765, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28288199

RESUMEN

Interactions occur between two or more organisms affecting each other. Interactions are decisive for the ecology of the organisms. Without direct experimental evidence the analysis of interactions is difficult. Correlation analyses that are based on co-occurrences are often used to approximate interaction. Here, we present a new mathematical model to estimate the interaction strengths between taxa, based on changes in their relative abundances across environmental gradients.


Asunto(s)
Consorcios Microbianos/genética , Modelos Teóricos , Microbiología del Suelo , Secuencia de Bases , Ecosistema , Alemania , Concentración de Iones de Hidrógeno , Consorcios Microbianos/fisiología , Modelos Estadísticos , Distribución Aleatoria , Suelo/química
16.
FEMS Microbiol Ecol ; 91(7)2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26092950

RESUMEN

Increased warming in spring and prolonged summer drought may alter soil microbial denitrification. We measured potential denitrification activity and denitrifier marker gene abundances (nirK, nirS, nosZ) in grasslands soils in three geographic regions characterized by site-specific land-use indices (LUI) after warming in spring, at an intermediate sampling and after summer drought. Potential denitrification was significantly increased by warming, but did not persist over the intermediate sampling. At the intermediate sampling, the relevance of grassland land-use intensity was reflected by increased potential N2O production at sites with higher LUI. Abundances of total bacteria did not respond to experimental warming or drought treatments, displaying resilience to minor and short-term effects of climate change. In contrast, nirS- and nirK-type denitrifiers were more influenced by drought in combination with LUI and pH, while the nosZ abundance responded to the summer drought manipulation. Land-use was a strong driver for potential denitrification as grasslands with higher LUI also had greater potentials for N2O emissions. We conclude that both warming and drought affected the denitrifying communities and the potential denitrification in grassland soils. However, these effects are overruled by regional and site-specific differences in soil chemical and physical properties which are also related to grassland land-use intensity.


Asunto(s)
Cambio Climático , Sequías , Pradera , Consorcios Microbianos/fisiología , Microbiología del Suelo , Bacterias/genética , Desnitrificación/genética , Genes Bacterianos , Óxido Nítrico/biosíntesis , ARN Ribosómico 16S/genética , Suelo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...