Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Anat ; 241(5): 1120-1132, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36056593

RESUMEN

The aetiology and pathophysiology of many diseases of the motor unit remain poorly understood and the role of the neuromuscular junction (NMJ) in this group of disorders is particularly overlooked, especially in humans, when these diseases are comparatively rare. However, elucidating the development, function and degeneration of the NMJ is essential to uncover its contribution to neuromuscular disorders, and to explore potential therapeutic avenues to treat these devastating diseases. Until now, an understanding of the role of the NMJ in disease pathogenesis has been hindered by inherent differences between rodent and human NMJs: stark contrasts in body size and corresponding differences in associated axon length underpin some of the translational issues in animal models of neuromuscular disease. Comparative studies in large mammalian models, including examination of naturally occurring, highly prevalent animal diseases and evaluation of their treatment, might provide more relevant insights into the pathogenesis and therapy of equivalent human diseases. This review argues that large animal models offer great potential to enhance our understanding of the neuromuscular system in health and disease, and in particular, when dealing with diseases for which nerve length dependency might underly the pathogenesis.


Asunto(s)
Axones , Unión Neuromuscular , Animales , Humanos , Mamíferos , Unión Neuromuscular/patología
2.
Molecules ; 27(17)2022 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-36080280

RESUMEN

Skeletal muscle homeostasis is essential for the maintenance of a healthy and active lifestyle. Imbalance in muscle homeostasis has significant consequences such as atrophy, loss of muscle mass, and progressive loss of functions. Aging-related muscle wasting, sarcopenia, and atrophy as a consequence of disease, such as cachexia, reduce the quality of life, increase morbidity and result in an overall poor prognosis. Investigating the muscle proteome related to muscle atrophy diseases has a great potential for diagnostic medicine to identify (i) potential protein biomarkers, and (ii) biological processes and functions common or unique to muscle wasting, cachexia, sarcopenia, and aging alone. We conducted a meta-analysis using gene ontology (GO) analysis of 24 human proteomic studies using tissue samples (skeletal muscle and adipose biopsies) and/or biofluids (serum, plasma, urine). Whilst there were few similarities in protein directionality across studies, biological processes common to conditions were identified. Here we demonstrate that the GO analysis of published human proteomics data can identify processes not revealed by single studies. We recommend the integration of proteomics data from tissue samples and biofluids to yield a comprehensive overview of the human skeletal muscle proteome. This will facilitate the identification of biomarkers and potential pathways of muscle-wasting conditions for use in clinics.


Asunto(s)
Caquexia , Sarcopenia , Biomarcadores/metabolismo , Ontología de Genes , Humanos , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Proteoma/genética , Proteoma/metabolismo , Proteómica , Calidad de Vida , Sarcopenia/metabolismo
3.
J Anat ; 241(5): 1133-1147, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36087283

RESUMEN

Morphological study of the neuromuscular junction (NMJ), a specialised peripheral synapse formed between a lower motor neuron and skeletal muscle fibre, has significantly contributed to the understanding of synaptic biology and neuromuscular disease pathogenesis. Rodent NMJs are readily accessible, and research into conditions such as amyotrophic lateral sclerosis (ALS), Charcot-Marie-Tooth disease (CMT), and spinal muscular atrophy (SMA) has relied heavily on experimental work in these small mammals. However, given that nerve length dependency is an important feature of many peripheral neuropathies, these rodent models have clear shortcomings; large animal models might be preferable, but their size presents novel anatomical challenges. Overcoming these constraints to study the NMJ morphology of large mammalian distal limb muscles is of prime importance to increase cross-species translational neuromuscular research potential, particularly in the study of long motor units. In the past, NMJ phenotype analysis of large muscle bodies within the equine distal pelvic limb, such as the tibialis cranialis, or within muscles of high fibrous content, such as the soleus, has posed a distinct experimental hurdle. We optimised a technique for NMJ location and dissection from equine pelvic limb muscles. Using a quantification method validated in smaller species, we demonstrate their morphology and show that equine NMJs can be reliably dissected, stained and analysed. We reveal that the NMJs within the equine soleus have distinctly different morphologies when compared to the extensor digitorum longus and tibialis cranialis muscles. Overall, we demonstrate that equine distal pelvic limb muscles can be regionally dissected, with samples whole-mounted and their innervation patterns visualised. These methods will allow the localisation and analysis of neuromuscular junctions within the muscle bodies of large mammals to identify neuroanatomical and neuropathological features.


Asunto(s)
Colorantes , Enfermedades del Sistema Nervioso Periférico , Animales , Caballos , Mamíferos , Neuronas Motoras/patología , Fibras Musculares Esqueléticas , Músculo Esquelético/patología , Unión Neuromuscular/patología , Enfermedades del Sistema Nervioso Periférico/patología
4.
J Anat ; 241(5): 1089-1107, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-34101196

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a motor neuron disease with an extremely heterogeneous clinical and genetic phenotype. In our efforts to find therapies for ALS, the scientific community has developed a plethora of mouse models, each with their own benefits and drawbacks. The peripheral nervous system, specifically the neuromuscular junction (NMJ), is known to be affected in ALS patients and shows marked dysfunction across mouse models. Evidence of pathology at the NMJ includes denervated NMJs, changes in endplate size and loss of terminal Schwann cells. This review compares the temporal disease progression with severity of disease at the NMJ in mouse models with the most commonly mutated genes in ALS patients (SOD1, C9ORF72, TARDBP and FUS). Despite variability, early NMJ dysfunction seems to be a common factor in models with SOD1, TARDBP and FUS mutations, while C9ORF72 models do not appear to follow the same pattern of pathology. Further work into determining the timing of NMJ pathology, particularly in newer ALS mouse models, will confirm its pivotal role in ALS pathogenesis and therefore highlight the NMJ as a potential therapeutic target.


Asunto(s)
Esclerosis Amiotrófica Lateral , Esclerosis Amiotrófica Lateral/genética , Animales , Proteína C9orf72/genética , Modelos Animales de Enfermedad , Ratones , Unión Neuromuscular/patología , Superóxido Dismutasa-1/genética
5.
Brain Commun ; 3(2): fcab081, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33977269

RESUMEN

Terminal Schwann cells are non-myelinating glial cells localized to the neuromuscular junction. They play an important role in regulating many aspects of neuromuscular junction form and function, in health and during disease. However, almost all previous studies of mammalian terminal Schwann cells have used rodent models. Despite a growing awareness of differences in the cellular and molecular anatomy of rodent and human neuromuscular junctions, it remains unclear as to whether these differences also extend to the terminal Schwann cells. Here, we have adapted immunohistochemical protocols to facilitate visualization and comparative morphometric analyses of terminal Schwann cells at the human and mouse neuromuscular junction. We labelled terminal Schwann cells in the peroneus brevis muscle in six adult mice and five humans with antibodies against S100 protein. All human neuromuscular junctions were associated with at least one terminal Schwann cell, consistent with findings from other species, with an average of ∼1.7 terminal Schwann cells per neuromuscular junction in both humans and mice. In contrast, human terminal Schwann cells were significantly smaller than those of mice (P ≤ 0.01), in keeping with differences in overall synaptic size. Human terminal Schwann cell cytoplasm extended significantly beyond the synaptic boundaries of the neuromuscular junction, whereas terminal Schwann cells in mice were largely restricted to the synapse. Moreover, there was a significant difference in the location of terminal Schwann cell nuclei (P ≤ 0.01), with human terminal Schwann cells having their nuclear compartment located beyond the perimeter of the synapse more than the mouse. Taken together, these findings demonstrate that terminal Schwann cells at the human neuromuscular junction have notable differences in their morphology and synaptic relationships compared to mice. These fundamental differences need to be considered when translating the findings of both neuromuscular junction biology and pathology from rodents to humans.

6.
J Anat ; 237(5): 827-836, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32573802

RESUMEN

The neuromuscular junction (NMJ)-a synapse formed between lower motor neuron and skeletal muscle fibre-represents a major focus of both basic neuroscience research and clinical neuroscience research. Although the NMJ is known to play an important role in many neurodegenerative conditions affecting humans, the vast majority of anatomical and physiological data concerning the NMJ come from lower mammalian (e.g. rodent) animal models. However, recent findings have demonstrated major differences between the cellular anatomy and molecular anatomy of human and rodent NMJs. Therefore, we undertook a comparative morphometric analysis of the NMJ across several larger mammalian species in order to generate baseline inter-species anatomical reference data for the NMJ and to identify animal models that better represent the morphology of the human NMJ in vivo. Using a standardized morphometric platform ('NMJ-morph'), we analysed 5,385 individual NMJs from lower/pelvic limb muscles (EDL, soleus and peronei) of 6 mammalian species (mouse, cat, dog, sheep, pig and human). There was marked heterogeneity of NMJ morphology both within and between species, with no overall relationship found between NMJ morphology and muscle fibre diameter or body size. Mice had the largest NMJs on the smallest muscle fibres; cats had the smallest NMJs on the largest muscle fibres. Of all the species examined, the sheep NMJ had the most closely matched morphology to that found in humans. Taken together, we present a series of comprehensive baseline morphometric data for the mammalian NMJ and suggest that ovine models are likely to best represent the human NMJ in health and disease.


Asunto(s)
Mamíferos/anatomía & histología , Unión Neuromuscular/anatomía & histología , Animales , Gatos , Perros , Humanos , Ratones
7.
R Soc Open Sci ; 7(4): 200128, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32431902

RESUMEN

Large-scale data analysis of synaptic morphology is becoming increasingly important to the field of neurobiological research (e.g. 'connectomics'). In particular, a detailed knowledge of neuromuscular junction (NMJ) morphology has proven to be important for understanding the form and function of synapses in both health and disease. The recent introduction of a standardized approach to the morphometric analysis of the NMJ-'NMJ-morph'-has provided the first common software platform with which to analyse and integrate NMJ data from different research laboratories. Here, we describe the design and development of a novel macro-'automated NMJ-morph' or 'aNMJ-morph'-to update and streamline the original NMJ-morph methodology. ImageJ macro language was used to encode the complete NMJ-morph workflow into seven navigation windows that generate robust data for 19 individual pre-/post-synaptic variables. The aNMJ-morph scripting was first validated against reference data generated by the parent workflow to confirm data reproducibility. aNMJ-morph was then compared with the parent workflow in large-scale data analysis of original NMJ images (240 NMJs) by multiple independent investigators. aNMJ-morph conferred a fourfold increase in data acquisition rate compared with the parent workflow, with average analysis times reduced to approximately 1 min per NMJ. Strong concordance was demonstrated between the two approaches for all 19 morphological variables, confirming the robust nature of aNMJ-morph. aNMJ-morph is a freely available and easy-to-use macro for the rapid and robust analysis of NMJ morphology and offers significant improvements in data acquisition and learning curve compared to the original NMJ-morph workflow.

8.
J Clin Invest ; 130(3): 1461-1465, 2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-31794435

RESUMEN

Cancer cachexia is a major cause of patient morbidity and mortality, with no efficacious treatment or management strategy. Despite cachexia sharing pathophysiological features with a number of neuromuscular wasting conditions, including age-related sarcopenia, the mechanisms underlying cachexia remain poorly understood. Studies of related conditions suggest that pathological targeting of the neuromuscular junction (NMJ) may play a key role in cachexia, but this has yet to be investigated in human patients. Here, high-resolution morphological analyses were undertaken on NMJs of rectus abdominis obtained from patients undergoing upper GI cancer surgery compared with controls (N = 30; n = 1,165 NMJs). Cancer patients included those with cachexia and weight-stable disease. Despite the low skeletal muscle index and significant muscle fiber atrophy (P < 0.0001) in patients with cachexia, NMJ morphology was fully conserved. No significant differences were observed in any of the pre- and postsynaptic variables measured. We conclude that NMJs remain structurally intact in rectus abdominis in both cancer and cachexia, suggesting that denervation of skeletal muscle is not a major driver of pathogenesis. The absence of NMJ pathology is in stark contrast to what is found in related conditions, such as age-related sarcopenia, and supports the hypothesis that intrinsic changes within skeletal muscle, independent of any changes in motor neurons, represent the primary locus of neuromuscular pathology in cancer cachexia.


Asunto(s)
Caquexia , Neoplasias Gastrointestinales , Unión Neuromuscular , Recto del Abdomen , Caquexia/metabolismo , Caquexia/patología , Femenino , Neoplasias Gastrointestinales/metabolismo , Neoplasias Gastrointestinales/patología , Humanos , Masculino , Unión Neuromuscular/metabolismo , Unión Neuromuscular/patología , Recto del Abdomen/metabolismo , Recto del Abdomen/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...