Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Genome ; 15(2): e20183, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35229982

RESUMEN

Hexaploid-derived resistance genes exhibit complex inheritance and expression patterns in tetraploid backgrounds. This study aimed to characterize the inheritance patterns and genomic compatibilities of hexaploid-derived Fusarium head blight (FHB) resistance genes in tetraploid durum wheat (Triticum durum Desf.). Evaluation of FHB resistance for F1 hybrids of hexaploid 'Sumai 3' crossed with tetraploid and hexaploid wheats indicated that Sumai 3-derived FHB resistance genes exhibit a dominant phenotypic effect seen only in hexaploid hybrids. Alternately, the hexaploid-derived FHB resistance genes from PI 277012 exhibited complete dominance in the crosses with both tetraploid and hexaploid wheat. FHB evaluation of the F1 hybrids of Sumai 3 and PI 277012 crossed with 'Langdon' (LDN)-'Chinese Spring' D-genome substitution lines suggested that chromosomes 2B, 3B, 4B, 5B, 6B, 3A, 4A, 6A, and 7A contain genes that suppress expression of the Sumai 3-derived FHB resistance, whereas chromosomes 4A, 6A, and 6B contain genes required for expression of PI 277012-derived FHB resistance. A wide range of segregation for FHB severity (10-90%) was observed in the F2 generation of Sumai 3 crossed with durum cultivars LDN and 'Divide', but the distribution of F3 families derived from the most resistant F2 segregants was skewed towards susceptibility. Similar segregation trends were observed in the crosses of PI 277012 with other durum wheats, whereby FHB resistance became slightly diluted over successive generations. These results suggest tetraploid durum wheat contains the unique alleles at multiple gene loci on different chromosomes that positively and/or negatively regulate the expression of hexaploid-derived FHB resistance genes, which complicate efforts to deploy these genes in durum breeding programs.


Asunto(s)
Fusarium , Triticum , Resistencia a la Enfermedad/genética , Fusarium/fisiología , Genómica , Patrón de Herencia , Fitomejoramiento , Enfermedades de las Plantas/genética , Tetraploidía , Triticum/genética
2.
PLoS One ; 16(3): e0247809, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33662021

RESUMEN

Plant breeding and disease management practices have increased the grain yield of hard winter wheat (Triticum aestivum L.) adapted to the Great Plains of the United States during the last century. However, the effect of genetic gains for seed yield and the application of fungicide on the micronutrient and cadmium (Cd) concentration in wheat grains is still unclear. The objectives of this study were to evaluate the effects of fungicide application on the productivity and nutritional quality of wheat cultivars representing 80 years of plant breeding efforts. Field experiments were conducted over two crop years (2017 and 2018) with eighteen hard winter wheat genotypes released between 1933 and 2013 in the presence or absence of fungicide application. For each growing season, the treatments were arranged in a split-plot design with the fungicide levels (treated and untreated) as the whole plot treatments and the genotypes as split-plot treatments in triplicate. The effects on seed yield, grain protein concentration (GPC), micronutrients, phytic acid, and Cd in grains were measured. While the yield of wheat was found to increase at annualized rates of 26.5 and 13.0 kg ha-1 yr-1 in the presence and absence of fungicide (P < 0.001), respectively, GPC (-190 and -180 mg kg-1 yr-1, P < 0.001), Fe (-35.0 and -44.0 µg kg-1 yr-1, P < 0.05), and Zn (-68.0 and -57.0 µg kg-1 yr-1, P < 0.01) significantly decreased during the period studied. In contrast to the other mineral elements, grain Cd significantly increased over time (0.4 µg kg-1 yr-1, P < 0.01) in the absence of fungicide. The results from this study are of great concern, as many mineral elements essential for human nutrition have decreased over time while the toxic heavy metal, Cd, has increased, indicating modern wheats are becoming a better vector of dietary Cd.


Asunto(s)
Cadmio/metabolismo , Fungicidas Industriales/efectos adversos , Micronutrientes/análisis , Minerales/análisis , Fitomejoramiento/métodos , Triticum/crecimiento & desarrollo , Grano Comestible/metabolismo , Genotipo , Estaciones del Año , Contaminantes del Suelo/análisis , Triticum/efectos de los fármacos , Triticum/genética , Triticum/metabolismo
3.
Front Plant Sci ; 10: 401, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31031779

RESUMEN

Soybean cyst nematode (Heterodera glycines Ichinohe) (SCN) is the most destructive pest affecting soybeans [Glycine max (L.) Merr.] in the U.S. To date, only two major SCN resistance alleles, rhg1 and Rhg4, identified in PI 88788 (rhg1) and Peking (rhg1/Rhg4), residing on chromosomes (Chr) 18 and 8, respectively, have been widely used to develop SCN resistant cultivars in the U.S. Thus, some SCN populations have evolved to overcome the PI 88788 and Peking derived resistance, making it a priority for breeders to identify new alleles and sources of SCN resistance. Toward that end, 461 soybean accessions from various origins were screened using a greenhouse SCN bioassay and genotyped with Illumina SoySNP50K iSelect BeadChips and three KASP SNP markers developed at the Rhg1 and Rhg4 loci to perform a genome-wide association study (GWAS) and a haplotype analysis at the Rhg1 and Rhg4 loci. In total, 35,820 SNPs were used for GWAS, which identified 12 SNPs at four genomic regions on Chrs 7, 8, 10, and 18 that were significantly associated with SCN resistance (P < 0.001). Of those, three SNPs were located at Rhg1 and Rhg4, and 24 predicted genes were found near the significant SNPs on Chrs 7 and 10. KASP SNP genotyping results of the 462 accessions at the Rhg1 and Rhg4 loci identified 30 that carried PI 88788-type resistance, 50 that carried Peking-type resistance, and 58 that carried neither the Peking-type nor the PI 88788-type resistance alleles, indicating they may possess novel SCN resistance alleles. By using two subsets of SNPs near the Rhg1 and Rhg4 loci obtained from SoySNP iSelect BeadChips, a haplotype analysis of 461 accessions grouped those 58 accessions differently from the accessions carrying Peking or PI 88788 derived resistance, thereby validating the genotyping results at Rhg1 and Rhg4. The significant SNPs, candidate genes, and newly characterized SCN resistant accessions will be beneficial for the development of DNA markers to be used for marker-assisted breeding and developing soybean cultivars carrying novel sources of SCN resistance.

4.
Theor Appl Genet ; 131(3): 659-671, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29224171

RESUMEN

KEY MESSAGE: Four soybean storage protein subunit QTLs were mapped using bulked segregant analysis and an F2 population, which were validated with an F5 RIL population. The storage protein globulins ß-conglycinin (7S subunit) and glycinin (11S subunits) can affect the quantity and quality of proteins found in soybean seeds and account for more than 70% of the total soybean protein. Manipulating the storage protein subunits to enhance soymeal nutrition and for desirable tofu manufacturing characteristics are two end-use quality goals in soybean breeding programs. To aid in developing soybean cultivars with desired seed composition, an F2 mapping population (n = 448) and an F5 RIL population (n = 180) were developed by crossing high protein cultivar 'Harovinton' with the breeding line SQ97-0263_3-1a, which lacks the 7S α', 11S A1, 11S A2, 11S A3 and 11S A4 subunits. The storage protein composition of each individual in the F2 and F5 populations were profiled using SDS-PAGE. Based on the presence/absence of the subunits, genomic DNA bulks were formed among the F2 plants to identify genomic regions controlling the 7S α' and 11S protein subunits. By utilizing polymorphic SNPs between the bulks characterized with Illumina SoySNP50K iSelect BeadChips at targeted genomic regions, KASP assays were designed and used to map QTLs causing the loss of the subunits. Soybean storage protein QTLs were identified on Chromosome 3 (11S A1), Chromosome 10 (7S α' and 11S A4), and Chromosome 13 (11S A3), which were also validated in the F5 RIL population. The results of this research could allow for the deployment of marker-assisted selection for desired storage protein subunits by screening breeding populations using the SNPs linked with the subunits of interest.


Asunto(s)
Antígenos de Plantas/genética , Globulinas/genética , Glycine max/genética , Sitios de Carácter Cuantitativo , Proteínas de Almacenamiento de Semillas/genética , Proteínas de Soja/genética , Mapeo Cromosómico , Cruzamientos Genéticos , Frecuencia de los Genes , Genotipo , Polimorfismo de Nucleótido Simple , Subunidades de Proteína/genética , Semillas
5.
Plant Genome ; 10(3)2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29293810

RESUMEN

The durum wheat ( ssp. (Desf.) Husn.) cultivar Soft Svevo with a soft kernel texture was developed through a -mediated homoeologous 5DS-5BS chromosomal translocation. The soft kernel trait ( locus) derived from chromosome 5D of the common wheat ( L.) cultivar Chinese Spring. Soft Svevo was used as the donor parent to create near-isogenic soft durum germplasm. The size of the translocation, its estimated breakpoint, and the amount of chromosome 5BS translocated, if any, remain unknown. Four near-isogenic pairs of hard and soft kernel durum genotypes, in addition to Soft Svevo and the Chinese Spring deletion line 5DS-2, which lacks a distal 22% terminal segment of chromosome 5DS, were genotyped using Illumina's 90k wheat single nucleotide polymorphism array. Single nucleotide polymorphism results were processed in GenomeStudio and 164 polymorphic markers were identified between the near-isogenic lines (NILs). Subsequent BLASTn results for two subsets of markers corresponding to the distal ends of chromosomes 5DS and 5BS indicated that the translocation event was nearly reciprocal, as a ∼24.36-Mbp segment of chromosome 5DS was gained, whereas a ∼20.01-Mbp segment of chromosome 5BS was lost. Genomic in situ hybridization images of the soft durum NILs agreed with these estimates and confirmed the absence of additional terminal or interstitial translocations. Soft durum represents the potential of a new wheat market class and these findings will assist durum wheat breeders in the development of new soft durum germplasm.


Asunto(s)
Cromosomas de las Plantas , Translocación Genética , Triticum/genética , Marcadores Genéticos , Genotipo , Hibridación in Situ , Cariotipificación , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA