Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Intervalo de año de publicación
1.
Nature ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38839955

RESUMEN

The capacity for terrestrial ecosystems to sequester additional carbon (C) with rising CO2 concentrations depends on soil nutrient availability1,2. Previous evidence suggested that mature forests growing on phosphorus (P)-deprived soils had limited capacity to sequester extra biomass under elevated CO2 (refs. 3-6), but uncertainty about ecosystem P cycling and its CO2 response represents a crucial bottleneck for mechanistic prediction of the land C sink under climate change7. Here, by compiling the first comprehensive P budget for a P-limited mature forest exposed to elevated CO2, we show a high likelihood that P captured by soil microorganisms constrains ecosystem P recycling and availability for plant uptake. Trees used P efficiently, but microbial pre-emption of mineralized soil P seemed to limit the capacity of trees for increased P uptake and assimilation under elevated CO2 and, therefore, their capacity to sequester extra C. Plant strategies to stimulate microbial P cycling and plant P uptake, such as increasing rhizosphere C release to soil, will probably be necessary for P-limited forests to increase C capture into new biomass. Our results identify the key mechanisms by which P availability limits CO2 fertilization of tree growth and will guide the development of Earth system models to predict future long-term C storage.

2.
Sci Data ; 11(1): 352, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589374

RESUMEN

We assembled the first gridded burned area (BA) database of national wildfire data (ONFIRE), a comprehensive and integrated resource for researchers, non-government organisations, and government agencies analysing wildfires in various regions of the Earth. We extracted and harmonised records from different regions and sources using open and reproducible methods, providing data in a common framework for the whole period available (starting from 1950 in Australia, 1959 in Canada, 1985 in Chile, 1980 in Europe, and 1984 in the United States) up to 2021 on a common 1° × 1° grid. The data originate from national agencies (often, ground mapping), thus representing the best local expert knowledge. Key opportunities and limits in using this dataset are discussed as well as possible future expansions of this open-source approach that should be explored. This dataset complements existing gridded BA data based on remote sensing and offers a valuable opportunity to better understand and assess fire regime changes, and their drivers, in these regions. The ONFIRE database can be freely accessed at https://zenodo.org/record/8289245 .

3.
Sci Data ; 11(1): 332, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575621

RESUMEN

Globe-LFMC 2.0, an updated version of Globe-LFMC, is a comprehensive dataset of over 280,000 Live Fuel Moisture Content (LFMC) measurements. These measurements were gathered through field campaigns conducted in 15 countries spanning 47 years. In contrast to its prior version, Globe-LFMC 2.0 incorporates over 120,000 additional data entries, introduces more than 800 new sampling sites, and comprises LFMC values obtained from samples collected until the calendar year 2023. Each entry within the dataset provides essential information, including date, geographical coordinates, plant species, functional type, and, where available, topographical details. Moreover, the dataset encompasses insights into the sampling and weighing procedures, as well as information about land cover type and meteorological conditions at the time and location of each sampling event. Globe-LFMC 2.0 can facilitate advanced LFMC research, supporting studies on wildfire behaviour, physiological traits, ecological dynamics, and land surface modelling, whether remote sensing-based or otherwise. This dataset represents a valuable resource for researchers exploring the diverse LFMC aspects, contributing to the broader field of environmental and ecological research.

4.
Glob Chang Biol ; 30(1): e17130, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273509

RESUMEN

Changes to the spatiotemporal patterns of wildfire are having profound implications for ecosystems and society globally, but we have limited understanding of the extent to which fire regimes will reorganize in a warming world. While predicting regime shifts remains challenging because of complex climate-vegetation-fire feedbacks, understanding the climate niches of fire regimes provides a simple way to identify locations most at risk of regime change. Using globally available satellite datasets, we constructed 14 metrics describing the spatiotemporal dimensions of fire and then delineated Australia's pyroregions-the geographic area encapsulating a broad fire regime. Cluster analysis revealed 18 pyroregions, notably including the (1) high-intensity, infrequent fires of the temperate forests, (2) high-frequency, smaller fires of the tropical savanna, and (3) low-intensity, diurnal, human-engineered fires of the agricultural zones. To inform the risk of regime shifts, we identified locations where the climate under three CMIP6 scenarios is projected to shift (i) beyond each pyroregion's historical climate niche, and (ii) into climate space that is novel to the Australian continent. Under middle-of-the-road climate projections (SSP2-4.5), an average of 65% of the extent of the pyroregions occurred beyond their historical climate niches by 2081-2100. Further, 52% of pyroregion extents, on average, were projected to occur in climate space without present-day analogues on the Australian continent, implying high risk of shifting to states that also lack present-day counterparts. Pyroregions in tropical and hot-arid climates were most at risk of shifting into both locally and continentally novel climate space because (i) their niches are narrower than southern temperate pyroregions, and (ii) their already-hot climates lead to earlier departure from present-day climate space. Such a shift implies widespread risk of regime shifts and the emergence of no-analogue fire regimes. Our approach can be applied to other regions to assess vulnerability to rapid fire regime change.


Asunto(s)
Ecosistema , Incendios , Humanos , Australia , Bosques , Clima , Cambio Climático
5.
Sci Data ; 10(1): 406, 2023 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-37355704

RESUMEN

Given the contribution of deforestation and forest degradation to the global carbon cycle, forest resources are critical to mitigating the global climate change effects. Improved forest monitoring across different biomes is important to understand forest dynamics better and improve global projections of future atmospheric CO2 concentration. Better quantification of the forest carbon cycle advances scientific understanding and informs global negotiations about carbon emissions reduction. High-quality estimates of forest carbon stocks are currently scarce in many developing countries. Here, we present the most comprehensive georeferenced data set to date of plot-level forest carbon estimates for Nepal. Based on field observations from Nepal's national forest inventory of 2010-2014; the data set includes estimates for two major forest carbon pools, aboveground biomass (AGB) and soil organic carbon (SOC) stocks from 2,009 and 1,156 inventory plots, respectively. The dataset fills an important knowledge gap about forest carbon stocks in the Central Himalayas, a region with highly heterogeneous environmental conditions and rich biodiversity that is poorly represented in existing global estimates of forest carbon.

6.
Sci Rep ; 13(1): 8090, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37208346

RESUMEN

Comprehensive forest carbon accounting requires reliable estimation of soil organic carbon (SOC) stocks. Despite being an important carbon pool, limited information is available on SOC stocks in global forests, particularly for forests in mountainous regions, such as the Central Himalayas. The availability of consistently measured new field data enabled us to accurately estimate forest soil organic carbon (SOC) stocks in Nepal, addressing a previously existing knowledge gap. Our method involved modelling plot-based estimates of forest SOC using covariates related to climate, soil, and topographic position. Our quantile random forest model resulted in the high spatial resolution prediction of Nepal's national forest SOC stock together with prediction uncertainties. Our spatially explicit forest SOC map showed the high SOC levels in high-elevation forests and a significant underrepresentation of these stocks in global-scale assessments. Our results offer an improved baseline on the distribution of total carbon in the forests of the Central Himalayas. The benchmark maps of predicted forest SOC and associated errors, along with our estimate of 494 million tonnes (SE = 16) of total SOC in the topsoil (0-30 cm) of forested areas in Nepal, carry important implications for understanding the spatial variability of forest SOC in mountainous regions with complex terrains.

7.
Sci Rep ; 12(1): 21608, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36517498

RESUMEN

In 2019, south-eastern Australia experienced its driest and hottest year on record, resulting in massive canopy dieback events in eucalypt dominated forests. A subsequent period of high precipitation in 2020 provided a rare opportunity to quantify the impacts of extreme drought and consequent recovery. We quantified canopy health and hydraulic impairment (native percent loss of hydraulic conductivity, PLC) of 18 native tree species growing at 15 sites that were heavily impacted by the drought both during and 8-10 months after the drought. Most species exhibited high PLC during drought (PLC:65.1 ± 3.3%), with no clear patterns across sites or species. Heavily impaired trees (PLC > 70%) showed extensive canopy browning. In the post-drought period, most surviving trees exhibited hydraulic recovery (PLC:26.1 ± 5.1%), although PLC remained high in some trees (50-70%). Regained hydraulic function (PLC < 50%) corresponded to decreased canopy browning indicating improved tree health. Similar drought (37.1 ± 4.2%) and post-drought (35.1 ± 4.4%) percentages of basal area with dead canopy suggested that trees with severely compromised canopies immediately after drought were not able to recover. This dataset provides insights into the impacts of severe natural drought on the health of mature trees, where hydraulic failure is a major contributor in canopy dieback and tree mortality during extreme drought events.


Asunto(s)
Sequías , Bosques , Australia , Árboles , Agua
8.
Nat Commun ; 13(1): 7161, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36418312

RESUMEN

Levels of fire activity and severity that are unprecedented in the instrumental record have recently been observed in forested regions around the world. Using a large sample of daily fire events and hourly climate data, here we show that fire activity in all global forest biomes responds strongly and predictably to exceedance of thresholds in atmospheric water demand, as measured by maximum daily vapour pressure deficit. The climatology of vapour pressure deficit can therefore be reliably used to predict forest fire risk under projected future climates. We find that climate change is projected to lead to widespread increases in risk, with at least 30 additional days above critical thresholds for fire activity in forest biomes on every continent by 2100 under rising emissions scenarios. Escalating forest fire risk threatens catastrophic carbon losses in the Amazon and major population health impacts from wildfire smoke in south Asia and east Africa.


Asunto(s)
Incendios , Incendios Forestales , Secuestro de Carbono , Agua , Bosques
9.
Science ; 377(6613): 1440-1444, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-36137034

RESUMEN

Deadwood is a large global carbon store with its store size partially determined by biotic decay. Microbial wood decay rates are known to respond to changing temperature and precipitation. Termites are also important decomposers in the tropics but are less well studied. An understanding of their climate sensitivities is needed to estimate climate change effects on wood carbon pools. Using data from 133 sites spanning six continents, we found that termite wood discovery and consumption were highly sensitive to temperature (with decay increasing >6.8 times per 10°C increase in temperature)-even more so than microbes. Termite decay effects were greatest in tropical seasonal forests, tropical savannas, and subtropical deserts. With tropicalization (i.e., warming shifts to tropical climates), termite wood decay will likely increase as termites access more of Earth's surface.


Asunto(s)
Bosques , Calentamiento Global , Isópteros , Madera , Animales , Ciclo del Carbono , Temperatura , Clima Tropical , Madera/microbiología
10.
Remote Sens Ecol Conserv ; 8(1): 57-71, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35873085

RESUMEN

Non-forest ecosystems, dominated by shrubs, grasses and herbaceous plants, provide ecosystem services including carbon sequestration and forage for grazing, and are highly sensitive to climatic changes. Yet these ecosystems are poorly represented in remotely sensed biomass products and are undersampled by in situ monitoring. Current global change threats emphasize the need for new tools to capture biomass change in non-forest ecosystems at appropriate scales. Here we developed and deployed a new protocol for photogrammetric height using unoccupied aerial vehicle (UAV) images to test its capability for delivering standardized measurements of biomass across a globally distributed field experiment. We assessed whether canopy height inferred from UAV photogrammetry allows the prediction of aboveground biomass (AGB) across low-stature plant species by conducting 38 photogrammetric surveys over 741 harvested plots to sample 50 species. We found mean canopy height was strongly predictive of AGB across species, with a median adjusted R 2 of 0.87 (ranging from 0.46 to 0.99) and median prediction error from leave-one-out cross-validation of 3.9%. Biomass per-unit-of-height was similar within but different among, plant functional types. We found that photogrammetric reconstructions of canopy height were sensitive to wind speed but not sun elevation during surveys. We demonstrated that our photogrammetric approach produced generalizable measurements across growth forms and environmental settings and yielded accuracies as good as those obtained from in situ approaches. We demonstrate that using a standardized approach for UAV photogrammetry can deliver accurate AGB estimates across a wide range of dynamic and heterogeneous ecosystems. Many academic and land management institutions have the technical capacity to deploy these approaches over extents of 1-10 ha-1. Photogrammetric approaches could provide much-needed information required to calibrate and validate the vegetation models and satellite-derived biomass products that are essential to understand vulnerable and understudied non-forested ecosystems around the globe.

12.
Sci Rep ; 12(1): 11871, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35831432

RESUMEN

There is an imperative for fire agencies to quantify the potential for prescribed burning to mitigate risk to life, property and environmental values while facing changing climates. The 2019-2020 Black Summer fires in eastern Australia raised questions about the effectiveness of prescribed burning in mitigating risk under unprecedented fire conditions. We performed a simulation experiment to test the effects of different rates of prescribed burning treatment on risks posed by wildfire to life, property and infrastructure. In four forested case study landscapes, we found that the risks posed by wildfire were substantially higher under the fire weather conditions of the 2019-2020 season, compared to the full range of long-term historic weather conditions. For area burnt and house loss, the 2019-2020 conditions resulted in more than a doubling of residual risk across the four landscapes, regardless of treatment rate (mean increase of 230%, range 164-360%). Fire managers must prepare for a higher level of residual risk as climate change increases the likelihood of similar or even more dangerous fire seasons.


Asunto(s)
Incendios , Incendios Forestales , Australia , Cambio Climático , Ecosistema , Bosques
13.
Tree Physiol ; 42(3): 523-536, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-34612494

RESUMEN

Mistletoes are important co-contributors to tree mortality globally, particularly during droughts. In Australia, mistletoe distributions are expanding in temperate woodlands, while their hosts have experienced unprecedented heat and drought stress in recent years. We investigated whether the excessive water use of mistletoes increased the probability of xylem emboli in a mature woodland during the recent record drought that was compounded by multiple heatwaves. We continuously recorded transpiration ($T_{SLA}$) of infected and uninfected branches from two eucalypt species over two summers, monitored stem and leaf water potentials ($\Psi $) and used hydraulic vulnerability curves to estimate percent loss in conductivity (PLC) for each species. Variations in weather (vapor pressure deficit, photosynthetically active radiation, soil water content), host species and % mistletoe foliage explained 78% of hourly $T_{SLA}$. While mistletoe acted as an uncontrollable sink for water in the host even during typical summer days, daily $T_{SLA}$ increased up to 4-fold in infected branches on hot days, highlighting the previously overlooked importance of temperature stress in amplifying water loss in mistletoes. The increased water use of mistletoes resulted in significantly decreased host $\Psi _{\rm{leaf}}$ and $\Psi _{\rm{trunk}}$. It further translated to an estimated increase of up to 11% PLC for infected hosts, confirming greater hydraulic dysfunction of infected trees that place them at higher risk of hydraulic failure. However, uninfected branches of Eucalyptus fibrosa F.Muell. had much tighter controls on water loss than uninfected branches of Eucalyptus moluccana Roxb., which shifted the risk of hydraulic failure towards an increased risk of carbon starvation for E. fibrosa. The contrasting mechanistic responses to heat and drought stress between both co-occurring species demonstrates the complexity of host-parasite interactions and highlights the challenge in predicting species-specific responses to biotic agents in a warmer and drier climate.


Asunto(s)
Sequías , Muérdago , Calor , Agua/fisiología , Xilema
14.
Sci Total Environ ; 806(Pt 4): 151462, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34742803

RESUMEN

Wildfires are becoming an increasing threat to many communities worldwide. There has been substantial progress towards understanding the proximal causes of increased fire activity in recent years at regional and national scales. However, subcontinental scale examinations of the commonalities and differences in the drivers of fire activity across different regions are rare in the Mediterranean zone of the European Union (EUMed). Here, we first develop a new classification of EUMed pyroregions, based on grouping different ecoregions with similar seasonal patterns of burned area. We then examine the thresholds associated with fire activity in response to different drivers related to fuel moisture, surface meteorology and atmospheric stability. We document an overarching role for variation in dead fuel moisture content (FMd), or its atmospheric proxy of vapor pressure deficit (VPD), as the major driver of fire activity. A proxy for live fuel moisture content (EVI), wind speed (WS) and the Continuous Haines Index (CH) played secondary, albeit important, roles. There were minor differences in the actual threshold values of FMd (10-12%), EVI (0.29-0.36) and CH (4.9-5.5) associated with the onset of fire activity across pyroregions with peak fire seasons in summer and fall, despite very marked differences in mean annual burned area and fire size range. The average size of fire events increased with the number of drivers exceeding critical thresholds and reaching increasingly extreme values of a driver led to disproportionate increases in the likelihood of a fire becoming a large fire. For instance, the percentage of fires >500 ha increased from 2% to 25% as FMd changed from the wettest to the driest quantile. Our study is among the first to jointly address the roles of fuel moisture, surface meteorology and atmospheric stability on fire activity in EUMed and provides novel insights on the interactions across fire activity triggers.


Asunto(s)
Tiempo (Meteorología) , Incendios Forestales , Europa (Continente) , Estaciones del Año , Viento
15.
Sci Total Environ ; 797: 149104, 2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34303242

RESUMEN

Fuel moisture limits the availability of fuel to wildfires in many forest areas worldwide, but the effects of climate change on moisture constraints remain largely unknown. Here we addressed how climate affects fuel moisture in pine stands from Catalonia, NE Spain, and the potential effects of increasing climate aridity on burned area in the Pyrenees, a mesic mountainous area where fire is currently rare. We first quantified variation in fuel moisture in six sites distributed across an altitudinal gradient where the long-term mean annual temperature and precipitation vary by 6-15 °C and 395-933 mm, respectively. We observed significant spatial variation in live (78-162%) and dead (10-15%) fuel moisture across sites. The pattern of variation was negatively linked (r = |0.6|-|0.9|) to increases in vapor pressure deficit (VPD) and in the Aridity Index. Using seasonal fire records over 2006-2020, we observed that summer burned area in the Mediterranean forests of Northeast Spain and Southern France was strongly dependent on VPD (r = 0.93), the major driver (and predictor) of dead fuel moisture content (DFMC) at our sites. Based on the difference between VPD thresholds associated with large wildfire seasons in the Mediterranean (3.6 kPa) and the maximum VPD observed in surrounding Pyrenean mountains (3.1 kPa), we quantified the "safety margin" for Pyrenean forests (difference between actual VPD and that associated with large wildfires) at 0.5 kPa. The effects of live fuel moisture content (LFMC) on burned area were not significant under current conditions, a situation that may change with projected increases in climate aridity. Overall, our results indicate that DFMC in currently fire-free areas in Europe, like the Pyrenees, with vast amounts of fuel in many forest stands, may reach critical dryness thresholds beyond the safety margin and experience large wildfires after only mild increases in VPD, although LFMC can modulate the response.


Asunto(s)
Incendios , Incendios Forestales , Cambio Climático , Ecosistema , Bosques
16.
New Phytol ; 230(4): 1354-1365, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33629360

RESUMEN

Eastern Australia was subject to its hottest and driest year on record in 2019. This extreme drought resulted in massive canopy die-back in eucalypt forests. The role of hydraulic failure and tree size on canopy die-back in three eucalypt tree species during this drought was examined. We measured pre-dawn and midday leaf water potential (Ψleaf ), per cent loss of stem hydraulic conductivity and quantified hydraulic vulnerability to drought-induced xylem embolism. Tree size and tree health was also surveyed. Trees with most, or all, of their foliage dead exhibited high rates of native embolism (78-100%). This is in contrast to trees with partial canopy die-back (30-70% canopy die-back: 72-78% native embolism), or relatively healthy trees (little evidence of canopy die-back: 25-31% native embolism). Midday Ψleaf was significantly more negative in trees exhibiting partial canopy die-back (-2.7 to -6.3 MPa), compared with relatively healthy trees (-2.1 to -4.5 MPa). In two of the species the majority of individuals showing complete canopy die-back were in the small size classes. Our results indicate that hydraulic failure is strongly associated with canopy die-back during drought in eucalypt forests. Our study provides valuable field data to help constrain models predicting mortality risk.


Asunto(s)
Sequías , Árboles , Australia , Bosques , Hojas de la Planta , Agua , Xilema
17.
Plant Cell Environ ; 43(8): 1944-1957, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32394490

RESUMEN

Resprouting is an ancestral trait in angiosperms that confers resilience after perturbations. As climate change increases stress, resprouting vigor is declining in many forest regions, but the underlying mechanism is poorly understood. Resprouting in woody plants is thought to be primarily limited by the availability of non-structural carbohydrate reserves (NSC), but hydraulic limitations could also be important. We conducted a multifactorial experiment with two levels of light (ambient, 2-3% of ambient) and three levels of water stress (0, 50 and 80 percent losses of hydraulic conductivity, PLC) on two Mediterranean oaks (Quercus ilex and Q. faginea) under a rain-out shelter (n = 360). The proportion of resprouting individuals after canopy clipping declined markedly as PLC increased for both species. NSC concentrations affected the response of Q. ilex, the species with higher leaf construction costs, and its effect depended on the PLC. The growth of resprouting individuals was largely dependent on photosynthetic rates for both species, while stored NSC availability and hydraulic limitations played minor and non-significant roles, respectively. Contrary to conventional wisdom, our results indicate that resprouting in oaks may be primarily driven by complex interactions between hydraulics and carbon sources, whereas stored NSC play a significant but secondary role.


Asunto(s)
Metabolismo de los Hidratos de Carbono/fisiología , Raíces de Plantas/metabolismo , Quercus/fisiología , Deshidratación , Fotosíntesis/fisiología , Hojas de la Planta/metabolismo , Quercus/crecimiento & desarrollo , España
19.
Nature ; 580(7802): 227-231, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32269351

RESUMEN

Atmospheric carbon dioxide enrichment (eCO2) can enhance plant carbon uptake and growth1-5, thereby providing an important negative feedback to climate change by slowing the rate of increase of the atmospheric CO2 concentration6. Although evidence gathered from young aggrading forests has generally indicated a strong CO2 fertilization effect on biomass growth3-5, it is unclear whether mature forests respond to eCO2 in a similar way. In mature trees and forest stands7-10, photosynthetic uptake has been found to increase under eCO2 without any apparent accompanying growth response, leaving the fate of additional carbon fixed under eCO2 unclear4,5,7-11. Here using data from the first ecosystem-scale Free-Air CO2 Enrichment (FACE) experiment in a mature forest, we constructed a comprehensive ecosystem carbon budget to track the fate of carbon as the forest responded to four years of eCO2 exposure. We show that, although the eCO2 treatment of +150 parts per million (+38 per cent) above ambient levels induced a 12 per cent (+247 grams of carbon per square metre per year) increase in carbon uptake through gross primary production, this additional carbon uptake did not lead to increased carbon sequestration at the ecosystem level. Instead, the majority of the extra carbon was emitted back into the atmosphere via several respiratory fluxes, with increased soil respiration alone accounting for half of the total uptake surplus. Our results call into question the predominant thinking that the capacity of forests to act as carbon sinks will be generally enhanced under eCO2, and challenge the efficacy of climate mitigation strategies that rely on ubiquitous CO2 fertilization as a driver of increased carbon sinks in global forests.


Asunto(s)
Atmósfera/química , Dióxido de Carbono/análisis , Dióxido de Carbono/metabolismo , Secuestro de Carbono , Bosques , Árboles/metabolismo , Biomasa , Eucalyptus/crecimiento & desarrollo , Eucalyptus/metabolismo , Calentamiento Global/prevención & control , Modelos Biológicos , Nueva Gales del Sur , Fotosíntesis , Suelo/química , Árboles/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...