Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 127(17): 173201, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34739281

RESUMEN

We report on the electrostatic trapping of neutral SrF molecules. The molecules are captured from a cryogenic buffer-gas beam source into the moving traps of a 4.5-m-long traveling-wave Stark decelerator. The SrF molecules in X^{2}Σ^{+}(v=0,N=1) state are brought to rest as the velocity of the moving traps is gradually reduced from 190 m/s to zero. The molecules are held for up to 50 ms in multiple electric traps of the decelerator. The trapped packets have a volume (FWHM) of 1 mm^{3} and a velocity spread of 5(1) m/s, which corresponds to a temperature of 60(20) mK. Our result demonstrates a factor 3 increase in the molecular mass that has been Stark decelerated and trapped. Heavy molecules (mass>100 amu) offer a highly increased sensitivity to probe physics beyond the standard model. This work significantly extends the species of neutral molecules of which slow beams can be created for collision studies, precision measurement, and trapping experiments.

2.
Rev Sci Instrum ; 92(3): 033202, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33819994

RESUMEN

A supersonic beam source for SrF and BaF molecules is constructed by combining the expansion of carrier gas (a mixture of 2% SF6 and 98% argon) from an Even-Lavie valve with laser ablation of a barium/strontium metal target at a repetition rate of 10 Hz. Molecular beams with a narrow translational velocity spread are produced at relative values of Δv/v = 0.053(11) and 0.054(9) for SrF and BaF, respectively. The relative velocity spread of the beams produced in our source is lower in comparison with the results from other metal fluoride beams produced in supersonic laser ablation sources. The rotational temperature of BaF is measured to be 3.5 K. The source produces 6 × 108 and 107 molecules per steradian per pulse in the X2Σ+ (ν = 0, N = 1) state of BaF and SrF molecules, respectively, a state amenable to Stark deceleration and laser cooling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...