Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Circ Res ; 131(9): e102-e119, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36164973

RESUMEN

BACKGROUND: Pulmonary arterial hypertension (PAH) is characterized by progressive distal pulmonary artery (PA) obstruction, leading to right ventricular hypertrophy and failure. Exacerbated intracellular calcium (Ca2+) signaling contributes to abnormalities in PA smooth muscle cells (PASMCs), including aberrant proliferation, apoptosis resistance, exacerbated migration, and arterial contractility. Store-operated Ca2+ entry is involved in Ca2+ homeostasis in PASMCs, but its properties in PAH are unclear. METHODS: Using a combination of Ca2+ imaging, molecular biology, in vitro, ex vivo, and in vivo approaches, we investigated the roles of the Orai1 SOC channel in PA remodeling in PAH and determined the consequences of pharmacological Orai1 inhibition in vivo using experimental models of pulmonary hypertension (PH). RESULTS: Store-operated Ca2+ entry and Orai1 mRNA and protein were increased in human PASMCs (hPASMCs) from patients with PAH (PAH-hPASMCs). We found that MEK1/2 (mitogen-activated protein kinase kinase 1/2), NFAT (nuclear factor of activated T cells), and NFκB (nuclear factor-kappa B) contribute to the upregulation of Orai1 expression in PAH-hPASMCs. Using small interfering RNA (siRNA) and Orai1 inhibitors, we found that Orai1 inhibition reduced store-operated Ca2+ entry, mitochondrial Ca2+ uptake, aberrant proliferation, apoptosis resistance, migration, and excessive calcineurin activity in PAH-hPASMCs. Orai1 inhibitors reduced agonist-evoked constriction in human PAs. In experimental rat models of PH evoked by chronic hypoxia, monocrotaline, or Sugen/hypoxia, administration of Orai1 inhibitors (N-{4-[3,5-bis(Trifluoromethyl)-1H-pyrazol-1-yl]phenyl}-4-methyl-1,2,3-thiadiazole-5-carboxamide [BTP2], 4-(2,5-dimethoxyphenyl)-N-[(pyridin-4-yl)methyl]aniline [JPIII], or 5J4) protected against PH. CONCLUSIONS: In human PAH and experimental PH, Orai1 expression and activity are increased. Orai1 inhibition normalizes the PAH-hPASMCs phenotype and attenuates PH in rat models. These results suggest that Orai1 should be considered as a relevant therapeutic target for PAH.


Asunto(s)
Compuestos de Anilina , Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Tiadiazoles , Animales , Humanos , Ratas , Compuestos de Anilina/uso terapéutico , Calcineurina/metabolismo , Calcio/metabolismo , Proliferación Celular/genética , Células Cultivadas , Hipertensión Pulmonar/tratamiento farmacológico , Hipoxia/metabolismo , MAP Quinasa Quinasa 1/metabolismo , Monocrotalina/toxicidad , Miocitos del Músculo Liso/metabolismo , Proteína ORAI1 , Arteria Pulmonar/metabolismo , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Tiadiazoles/metabolismo
2.
Circ Genom Precis Med ; 15(3): e003464, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35549293

RESUMEN

BACKGROUND: Congenitally corrected transposition of the great arteries (ccTGA) is a rare disease of unknown cause. We aimed to better understand familial recurrence patterns. METHODS: An international, multicentre, retrospective cohort study was conducted in 29 tertiary hospitals in 6 countries between 1990 and 2018, entailing investigation of 1043 unrelated ccTGA probands. RESULTS: Laterality defects and atrioventricular block at diagnosis were observed in 29.9% and 9.3%, respectively. ccTGA was associated with primary ciliary dyskinesia in 11 patients. Parental consanguinity was noted in 3.4% cases. A congenital heart defect was diagnosed in 81 relatives from 69 families, 58% of them being first-degree relatives, including 28 siblings. The most prevalent defects in relatives were dextro-transposition of the great arteries (28.4%), laterality defects (13.6%), and ccTGA (11.1%); 36 new familial clusters were described, including 8 pedigrees with concordant familial aggregation of ccTGA, 19 pedigrees with familial co-segregation of ccTGA and dextro-transposition of the great arteries, and 9 familial co-segregation of ccTGA and laterality defects. In one family co-segregation of ccTGA, dextro-transposition of the great arteries and heterotaxy syndrome in 3 distinct relatives was found. In another family, twins both displayed ccTGA and primary ciliary dyskinesia. CONCLUSIONS: ccTGA is not always a sporadic congenital heart defect. Familial clusters as well as evidence of an association between ccTGA, dextro-transposition of the great arteries, laterality defects and in some cases primary ciliary dyskinesia, strongly suggest a common pathogenetic pathway involving laterality genes in the pathophysiology of ccTGA.


Asunto(s)
Trastornos de la Motilidad Ciliar , Cardiopatías Congénitas , Transposición de los Grandes Vasos , Arterias , Trastornos de la Motilidad Ciliar/complicaciones , Transposición Congénitamente Corregida de las Grandes Arterias , Humanos , Estudios Retrospectivos , Transposición de los Grandes Vasos/complicaciones , Transposición de los Grandes Vasos/diagnóstico , Transposición de los Grandes Vasos/genética
3.
Am J Respir Cell Mol Biol ; 66(5): 539-554, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35175177

RESUMEN

Mutations in ABCC8 have been identified in pulmonary arterial hypertension (PAH). ABCC8 encodes SUR1, a regulatory subunit of the ATP-sensitive potassium channel Kir6.2. However, the pathophysiological role of the SUR1/Kir6.2 channel in PAH is unknown. We hypothesized that activation of SUR1 could be a novel potential target for PAH. We analyzed the expression of SUR1/Kir6.2 in the lungs and pulmonary artery (PA) in human PAH or experimental pulmonary hypertension (PH). The contribution of SUR1 in human or rat PA tone was evaluated, and we measured the consequences of in vivo activation of SUR1 in control and PH rats. SUR1 and Kir6.2 protein expression was not reduced in the lungs or human pulmonary arterial endothelial cells and smooth muscle cells from PAH or experimentally induced PH. We showed that pharmacological activation of SUR1 by three different SUR1 activators (diazoxide, VU0071063, and NN414) leads to PA relaxation. Conversely, the inhibition of SUR1/Kir6.2 channels causes PA constriction. In vivo, long- and short-term activation of SUR1 with diazoxide reversed monocrotaline-induced PH in rats. In addition, in vivo diazoxide application (short protocol) reduced the severity of PH in chronic-hypoxia rats. Moreover, 3 weeks of diazoxide exposure in control rats had no cardiovascular effects. Finally, in vivo, activation of SUR1 with NN414 reduced monocrotaline-induced PH in rats. In PAH and experimental PH, the expression of SUR1/Kir6.2 was still present. In vivo pharmacological SUR1 activation by two different molecules alleviated experimental PH, providing proof of concept that SUR1 activation should be considered for PAH and evaluated more thoroughly.


Asunto(s)
Diazóxido , Hipertensión Arterial Pulmonar , Animales , Diazóxido/farmacología , Células Endoteliales , Hipertensión Pulmonar Primaria Familiar , Monocrotalina , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Ratas
4.
Front Cardiovasc Med ; 9: 1066047, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36704469

RESUMEN

Aims: We hypothesized that the ATP-sensitive K+ channels (KATP) regulatory subunit (ABCC9) contributes to PAH pathogenesis. ABCC9 gene encodes for two regulatory subunits of KATP channels: the SUR2A and SUR2B proteins. In the KATP channel, the SUR2 subunits are associated with the K+ channel Kir6.1. We investigated how the SUR2/Kir6.1 channel contributes to PAH pathogenesis and its potential as a therapeutic target in PAH. Methods and results: Using in vitro, ex vivo, and in vivo approaches, we analyzed the localization and expression of SUR2A, SUR2B, and Kir6.1 in the pulmonary vasculature of controls and patients with PAH as in experimental pulmonary hypertension (PH) rat models and its contribution to PAH physiopathology. Finally, we deciphered the consequences of in vivo activation of SUR2/Kir6.1 in the monocrotaline (MCT)-induced PH model. We found that SUR2A, SUR2B, and Kir6.1 were expressed in the lungs of controls and patients with PAH and MCT-induced PH rat models. Organ bath studies showed that SUR2 activation by pinacidil induced relaxation of pulmonary arterial in rats and humans. In vitro experiments on human pulmonary arterial smooth muscle cells and endothelial cells (hPASMCs and hPAECs) in controls and PAH patients showed decreased cell proliferation and migration after SUR2 activation. We demonstrated that SUR2 activation in rat right ventricular (RV) cardiomyocytes reduced RV action potential duration by patch-clamp. Chronic pinacidil administration in control rats increased heart rate without changes in hemodynamic parameters. Finally, in vivo pharmacological activation of SUR2 on MCT and Chronic-hypoxia (CH)-induced-PH rats showed improved PH. Conclusion: We showed that SUR2A, SUR2B, and Kir6.1 are presented in hPASMCs and hPAECs of controls and PAH patients. In vivo SUR2 activation reduced the MCT-induced and CH-induced PH phenotype, suggesting that SUR2 activation should be considered for treating PAH.

5.
Cells ; 10(6)2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-34205639

RESUMEN

INTRODUCTION: Over time and despite optimal medical management of patients with pulmonary hypertension (PH), the right ventricle (RV) function deteriorates from an adaptive to maladaptive phenotype, leading to RV failure (RVF). Although RV function is well recognized as a prognostic factor of PH, no predictive factor of RVF episodes has been elucidated so far. We hypothesized that determining RV metabolic alterations could help to understand the mechanism link to the deterioration of RV function as well as help to identify new biomarkers of RV failure. METHODS: In the current study, we aimed to characterize the metabolic reprogramming associated with the RV remodeling phenotype during experimental PH induced by chronic-hypoxia-(CH) exposure or monocrotaline-(MCT) exposure in rats. Three weeks after PH initiation, we hemodynamically characterized PH (echocardiography and RV catheterization), and then we used an untargeted metabolomics approach based on liquid chromatography coupled to high-resolution mass spectrometry to analyze RV and LV tissues in addition to plasma samples from MCT-PH and CH-PH rat models. RESULTS: CH exposure induced adaptive RV phenotype as opposed to MCT exposure which induced maladaptive RV phenotype. We found that predominant alterations of arginine, pyrimidine, purine, and tryptophan metabolic pathways were detected on the heart (LV+RV) and plasma samples regardless of the PH model. Acetylspermidine, putrescine, guanidinoacetate RV biopsy levels, and cytosine, deoxycytidine, deoxyuridine, and plasmatic thymidine levels were correlated to RV function in the CH-PH model. It was less likely correlated in the MCT model. These pathways are well described to regulate cell proliferation, cell hypertrophy, and cardioprotection. These findings open novel research perspectives to find biomarkers for early detection of RV failure in PH.


Asunto(s)
Ventrículos Cardíacos/metabolismo , Hipertensión Pulmonar/metabolismo , Hipoxia/metabolismo , Monocrotalina/toxicidad , Remodelación Ventricular/efectos de los fármacos , Animales , Enfermedad Crónica , Modelos Animales de Enfermedad , Ventrículos Cardíacos/patología , Ventrículos Cardíacos/fisiopatología , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/patología , Hipertensión Pulmonar/fisiopatología , Hipoxia/inducido químicamente , Hipoxia/fisiopatología , Masculino , Ratas , Ratas Wistar
6.
Eur Respir J ; 58(5)2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33926975

RESUMEN

INTRODUCTION: A reduction in pulmonary artery relaxation is a key event in the pathogenesis of pulmonary arterial hypertension (PAH). Cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction in airway epithelial cells plays a central role in cystic fibrosis; CFTR is also expressed in pulmonary arteries and has been shown to control endothelium-independent relaxation. AIM AND OBJECTIVES: We aimed to delineate the role of CFTR in PAH pathogenesis through observational and interventional experiments in human tissues and animal models. METHODS AND RESULTS: Reverse-transcriptase quantitative PCR, confocal imaging and electron microscopy showed that CFTR expression was reduced in pulmonary arteries from patients with idiopathic PAH (iPAH) and in rats with monocrotaline-induced pulmonary hypertension (PH). Moreover, using myography on human, pig and rat pulmonary arteries, we demonstrated that CFTR activation induces pulmonary artery relaxation. CFTR-mediated pulmonary artery relaxation was reduced in pulmonary arteries from iPAH patients and rats with monocrotaline- or chronic hypoxia-induced PH. Long-term in vivo CFTR inhibition in rats significantly increased right ventricular systolic pressure, which was related to exaggerated pulmonary vascular cell proliferation in situ and vessel neomuscularisation. Pathologic assessment of lungs from patients with severe cystic fibrosis (F508del-CFTR) revealed severe pulmonary artery remodelling with intimal fibrosis and medial hypertrophy. Lungs from homozygous F508delCftr rats exhibited pulmonary vessel neomuscularisation. The elevations in right ventricular systolic pressure and end diastolic pressure in monocrotaline-exposed rats with chronic CFTR inhibition were more prominent than those in vehicle-exposed rats. CONCLUSIONS: CFTR expression is strongly decreased in pulmonary artery smooth muscle and endothelial cells in human and animal models of PH. CFTR inhibition increases vascular cell proliferation and strongly reduces pulmonary artery relaxation.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Hipertensión Arterial Pulmonar , Animales , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Células Endoteliales , Humanos , Monocrotalina , Hipertensión Arterial Pulmonar/genética , Hipertensión Arterial Pulmonar/patología , Ratas , Porcinos
7.
Cardiovasc Res ; 117(12): 2474-2488, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-33483721

RESUMEN

AIMS: Pulmonary hypertension (PH) is a common complication of left heart disease (LHD, Group 2 PH) leading to right ventricular (RV) failure and death. Several loss-of-function (LOF) mutations in KCNK3 were identified in pulmonary arterial hypertension (PAH, Group 1 PH). Additionally, we found that KCNK3 dysfunction is a hallmark of PAH at pulmonary vascular and RV levels. However, the role of KCNK3 in the pathobiology of PH due to LHD is unknown. METHODS AND RESULTS: We evaluated the role of KCNK3 on PH induced by ascending aortic constriction (AAC), in WT and Kcnk3-LOF-mutated rats, by echocardiography, RV catheterization, histology analyses, and molecular biology experiments. We found that Kcnk3-LOF-mutation had no consequence on the development of left ventricular (LV) compensated concentric hypertrophy in AAC, while left atrial emptying fraction was impaired in AAC-Kcnk3-mutated rats. AAC-animals (WT and Kcnk3-mutated rats) developed PH secondary to AAC and Kcnk3-mutated rats developed more severe PH than WT. AAC-Kcnk3-mutated rats developed RV and LV fibrosis in association with an increase of Col1a1 mRNA in right ventricle and left ventricle. AAC-Kcnk3-mutated rats developed severe pulmonary vascular (pulmonary artery as well as pulmonary veins) remodelling with intense peri-vascular and peri-bronchial inflammation, perivascular oedema, alveolar wall thickening, and exaggerated lung vascular cell proliferation compared to AAC-WT-rats. Finally, in lung, right ventricle, left ventricle, and left atrium of AAC-Kcnk3-mutated rats, we found a strong increased expression of Il-6 and periostin expression and a reduction of lung Ctnnd1 mRNA (coding for p120 catenin), contributing to the exaggerated pulmonary and heart remodelling and pulmonary vascular oedema in AAC-Kcnk3-mutated rats. CONCLUSIONS: Our results indicate that Kcnk3-LOF is a key event in the pathobiology of PH due to AAC, suggesting that Kcnk3 channel dysfunction could play a potential key role in the development of PH due to LHD.


Asunto(s)
Presión Arterial , Proteínas del Tejido Nervioso/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Hipertensión Arterial Pulmonar/etiología , Arteria Pulmonar/metabolismo , Disfunción Ventricular Izquierda/complicaciones , Función Ventricular Izquierda , Animales , Modelos Animales de Enfermedad , Mutación , Proteínas del Tejido Nervioso/genética , Canales de Potasio de Dominio Poro en Tándem/genética , Hipertensión Arterial Pulmonar/genética , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Arterial Pulmonar/fisiopatología , Arteria Pulmonar/fisiopatología , Ratas Transgénicas , Transducción de Señal , Remodelación Vascular , Disfunción Ventricular Izquierda/genética , Disfunción Ventricular Izquierda/metabolismo , Disfunción Ventricular Izquierda/fisiopatología , Presión Ventricular
8.
Int J Cardiol ; 320: 168-177, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32712110

RESUMEN

BACKGROUND: Cardiac magnetic resonance (CMR) imaging with velocity encoding along all three directions of flow, known as 4DFlow CMR, provides both anatomical and functional information. Few data are available on the usefulness of 4DFlow CMR in everyday practice. Here, our objective was to investigate the usefulness of 4DFlow CMR for assessing congenital heart disease (CHD) in everyday practice. METHODS: From 2017 to 2019, consecutive patients who underwent 4DFlow CMR were included prospectively at a single high-volume centre. The parameters recommended by an expert's consensus statement for each diagnosis (congenital valvulopathy, septal defect, complex CHD, tetralogy of Fallot, aortic abnormalities) were assessed by two blinded experienced readers. 4DFlow CMRs that provided all recommended parameters were considered successful. Inter-observer and intra-observer agreement were investigated. RESULTS: We included 187 adults and 60 children covering broad ranges of weight (4.5-142 kg) and age (0.1-67 years). 4DFlow CMR was always the second-line imaging modality, after inconclusive echocardiography, and was successful in 231/247 (91%) patients, with no significant difference between children and adults (54/60, 90%; and 177/187, 95%; respectively; p = .13). Longer time using 4DFlow CMR at our centre was associated with success; in children, older age was also associated with exam success. There was an about 12-month learning curve in children. The success rate was lowest in neonates. Inter-observer and intra-observer agreement were substantial. CONCLUSION: Our results suggest that 4DFlow CMR usually provides a comprehensive assessment of CHD in adults and children. A learning curve exists for children and the investigation remains challenging in neonates.


Asunto(s)
Cardiopatías Congénitas , Defectos de los Tabiques Cardíacos , Adolescente , Adulto , Anciano , Niño , Preescolar , Corazón , Cardiopatías Congénitas/diagnóstico por imagen , Humanos , Lactante , Recién Nacido , Imagen por Resonancia Magnética , Imagen por Resonancia Cinemagnética , Espectroscopía de Resonancia Magnética , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Adulto Joven
9.
Can J Cardiol ; 36(11): 1831.e7-1831.e9, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32512141

RESUMEN

Heart failure is the main cause of death in patients with pulmonary arterial hypertension and congenital heart disease. We used an original approach in a 15-year-old girl with rapidly progressive right heart failure secondary to severe pulmonary arterial hypertension and partial anomalous pulmonary venous return. After surgical congenital heart defect repair on cardiopulmonary bypass, she was weaned off bypass using a central Novalung for 11 days, then started on triple specific pulmonary vasodilator therapy.


Asunto(s)
Trasplante de Pulmón , Cuidados Preoperatorios/métodos , Hipertensión Arterial Pulmonar/terapia , Síndrome de Cimitarra/terapia , Adolescente , Femenino , Humanos , Hipertensión Arterial Pulmonar/complicaciones , Síndrome de Cimitarra/complicaciones
10.
Am J Respir Cell Mol Biol ; 63(1): 118-131, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32209028

RESUMEN

Pulmonary veno-occlusive disease (PVOD) occurs in humans either as a heritable form (hPVOD) due to biallelic inactivating mutations of EIF2AK4 (encoding GCN2) or as a sporadic form in older age (sPVOD). The chemotherapeutic agent mitomycin C (MMC) is a potent inducer of PVOD in humans and in rats (MMC-PVOD). Here, we compared human hPVOD and sPVOD, and MMC-PVOD pathophysiology at the histological, cellular, and molecular levels to unravel common altered pathomechanisms. MMC exposure in rats was associated primarily with arterial and microvessel remodeling, and secondarily by venous remodeling, when PVOD became symptomatic. In all forms of PVOD tested, there was convergent GCN2-dependent but eIF2α-independent pulmonary protein overexpression of HO-1 (heme oxygenase 1) and CHOP (CCAAT-enhancer-binding protein [C/EBP] homologous protein), two downstream effectors of GCN2 signaling and endoplasmic reticulum stress. In human PVOD samples, CHOP immunohistochemical staining mainly labeled endothelial cells in remodeled veins and arteries. Strong HO-1 staining was observed only within capillary hemangiomatosis foci, where intense microvascular proliferation occurs. HO-1 and CHOP stainings were not observed in control and pulmonary arterial hypertension lung tissues, supporting the specificity for CHOP and HO-1 involvement in PVOD pathobiology. In vivo loss of GCN2 (EIF2AK4 mutations carriers and Eif2ak4-/- rats) or in vitro GCN2 inhibition in cultured pulmonary artery endothelial cells using pharmacological and siRNA approaches demonstrated that GCN2 loss of function negatively regulates BMP (bone morphogenetic protein)-dependent SMAD1/5/9 signaling. Exogenous BMP9 was still able to reverse GCN2 inhibition-induced proliferation of pulmonary artery endothelial cells. In conclusion, we identified CHOP and HO-1 inhibition, and BMP9, as potential therapeutic options for PVOD.


Asunto(s)
Enfermedad Veno-Oclusiva Pulmonar/metabolismo , Enfermedad Veno-Oclusiva Pulmonar/patología , Animales , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Células Endoteliales/patología , Humanos , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/patología , Pulmón/metabolismo , Pulmón/patología , Mutación/genética , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Ratas , Transducción de Señal/fisiología , Factor de Transcripción CHOP/metabolismo
11.
Circ Res ; 125(7): 678-695, 2019 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-31347976

RESUMEN

RATIONALE: Pulmonary arterial hypertension is a severe lethal cardiopulmonary disease. Loss of function mutations in KCNK3 (potassium channel subfamily K member 3) gene, which encodes an outward rectifier K+ channel, have been identified in pulmonary arterial hypertension patients. OBJECTIVE: We have demonstrated that KCNK3 dysfunction is common to heritable and nonheritable pulmonary arterial hypertension and to experimental pulmonary hypertension (PH). Finally, KCNK3 is not functional in mouse pulmonary vasculature. METHODS AND RESULTS: Using CRISPR/Cas9 technology, we generated a 94 bp out of frame deletion in exon 1 of Kcnk3 gene and characterized these rats at the electrophysiological, echocardiographic, hemodynamic, morphological, cellular, and molecular levels to decipher the cellular mechanisms associated with loss of KCNK3. Using patch-clamp technique, we validated our transgenic strategy by demonstrating the absence of KCNK3 current in freshly isolated pulmonary arterial smooth muscle cells from Kcnk3-mutated rats. At 4 months of age, echocardiographic parameters revealed shortening of the pulmonary artery acceleration time associated with elevation of the right ventricular systolic pressure. Kcnk3-mutated rats developed more severe PH than wild-type rats after monocrotaline exposure or chronic hypoxia exposure. Kcnk3-mutation induced a lung distal neomuscularization and perivascular extracellular matrix activation. Lungs of Kcnk3-mutated rats were characterized by overactivation of ERK1/2 (extracellular signal-regulated kinase1-/2), AKT (protein kinase B), SRC, and overexpression of HIF1-α (hypoxia-inducible factor-1 α), survivin, and VWF (Von Willebrand factor). Linked with plasma membrane depolarization, reduced endothelial-NOS expression and desensitization of endothelial-derived hyperpolarizing factor, Kcnk3-mutated rats presented predisposition to vasoconstriction of pulmonary arteries and a severe loss of sildenafil-induced pulmonary arteries relaxation. Moreover, we showed strong alteration of right ventricular cardiomyocyte excitability. Finally, Kcnk3-mutated rats developed age-dependent PH associated with low serum-albumin concentration. CONCLUSIONS: We established the first Kcnk3-mutated rat model of PH. Our results confirm that KCNK3 loss of function is a key event in pulmonary arterial hypertension pathogenesis. This model presents new opportunities for understanding the initiating mechanisms of PH and testing biologically relevant therapeutic molecules in the context of PH.


Asunto(s)
Modelos Animales de Enfermedad , Hipertensión Pulmonar/genética , Mutación con Pérdida de Función , Proteínas del Tejido Nervioso/genética , Canales de Potasio de Dominio Poro en Tándem/genética , Potenciales de Acción , Animales , Presión Sanguínea , Femenino , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/patología , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Pulmón/metabolismo , Pulmón/patología , Masculino , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiología , Proteínas del Tejido Nervioso/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Ratas , Ratas Sprague-Dawley , Survivin/genética , Survivin/metabolismo , Vasoconstricción , Factor de von Willebrand/genética , Factor de von Willebrand/metabolismo
12.
J Mol Cell Cardiol ; 133: 57-66, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31158360

RESUMEN

AIMS: Cyclic AMP phosphodiesterases (PDEs) are important modulators of the cardiac response to ß-adrenergic receptor (ß-AR) stimulation. PDE3 is classically considered as the major cardiac PDE in large mammals and human, while PDE4 is preponderant in rodents. However, it remains unclear whether PDE4 also plays a functional role in large mammals. Our purpose was to understand the role of PDE4 in cAMP hydrolysis and excitation-contraction coupling (ECC) in the pig heart, a relevant pre-clinical model. METHODS AND RESULTS: Real-time cAMP variations were measured in isolated adult pig right ventricular myocytes (APVMs) using a Förster resonance energy transfer (FRET) biosensor. ECC was investigated in APVMs loaded with Fura-2 and paced at 1 Hz allowing simultaneous measurement of intracellular Ca2+ and sarcomere shortening. The expression of the different PDE4 subfamilies was assessed by Western blot in pig right ventricles and APVMs. Similarly to PDE3 inhibition with cilostamide (Cil), PDE4 inhibition with Ro 20-1724 (Ro) increased cAMP levels and inotropy under basal conditions. PDE4 inhibition enhanced the effects of the non-selective ß-AR agonist isoprenaline (Iso) and the effects of Cil, and increased spontaneous diastolic Ca2+ waves (SCWs) in these conditions. PDE3A, PDE4A, PDE4B and PDE4D subfamilies are expressed in pig ventricles. In APVMs isolated from a porcine model of repaired tetralogy of Fallot which leads to right ventricular failure, PDE4 inhibition also exerts inotropic and pro-arrhythmic effects. CONCLUSIONS: Our results show that PDE4 controls ECC in APVMs and suggest that PDE4 inhibitors exert inotropic and pro-arrhythmic effects upon PDE3 inhibition or ß-AR stimulation in our pre-clinical model. Thus, PDE4 inhibitors should be used with caution in clinics as they may lead to arrhythmogenic events upon stress.


Asunto(s)
AMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/genética , Acoplamiento Excitación-Contracción/genética , Miocitos Cardíacos/fisiología , Potenciales de Acción/efectos de los fármacos , Agonistas Adrenérgicos beta/farmacología , Animales , Señalización del Calcio/efectos de los fármacos , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/metabolismo , Familia de Multigenes , Miocitos Cardíacos/efectos de los fármacos , Inhibidores de Fosfodiesterasa 3/farmacología , Inhibidores de Fosfodiesterasa 4/farmacología , Receptores Adrenérgicos beta/metabolismo , Porcinos
13.
Int J Mol Sci ; 20(7)2019 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-30934680

RESUMEN

The bromodomain and extra-terminal domain family inhibitors (BETi) are a promising new class of anticancer agents. Since numerous anticancer drugs have been correlated to cardiomyopathy, and since BETi can affect non-cancerous tissues, we aimed to investigate in healthy animals any ultrastructural BETi-induced alterations of the heart as compared to skeletal muscle. Male Wistar rats were either treated during 3 weeks with I-BET-151 (2 or 10 mg/kg/day) (W3) or treated for 3 weeks then allowed to recover for another 3 weeks (W6) (3-weeks drug washout). Male C57Bl/6J mice were only treated during 5 days (50 mg/kg/day). We demonstrated the occurrence of ultrastructural alterations and progressive destruction of cardiomyocyte mitochondria after I-BET-151 exposure. Those mitochondrial alterations were cardiac muscle-specific, since the skeletal muscles of exposed animals were similar in ultrastructure presentation to the non-exposed animals. I-BET-151 decreased the respiration rate of heart mitochondria in a dose-dependent manner. At the higher dose, it also decreased mitochondrial mass, as evidenced by reduced right ventricular citrate synthase content. I-BET-151 reduced the right and left ventricular fractional shortening. The concomitant decrease in the velocity-time-integral in both the aorta and the pulmonary artery is also suggestive of an impaired heart function. The possible context-dependent cardiac side effects of these drugs have to be appreciated. Future studies should focus on the basic mechanisms of potential cardiovascular toxicities induced by BETi and strategies to minimize these unexpected complications.


Asunto(s)
Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/ultraestructura , Animales , Electrocardiografía , Corazón/efectos de los fármacos , Corazón/fisiopatología , Masculino , Ratones Endogámicos C57BL , Mitocondrias Cardíacas/efectos de los fármacos , Especificidad de Órganos , Ratas Wistar
14.
Arch Cardiovasc Dis ; 112(5): 323-333, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30797733

RESUMEN

BACKGROUND: Transcatheter pulmonary valvuloplasty in neonates with pulmonary atresia and intact ventricular septum (PA-IVS) or duct-dependent pulmonary valve stenosis (DD-PVS) has become a reasonable alternative to surgical right ventricle decompression. AIM: To investigate mid-term outcomes following pulmonary valvuloplasty. METHODS: Sixty-five neonates with PA-IVS (n=29) or DD-PVS (n=36) (median age 4 days; mean weight 3.0kg) undergoing pulmonary valvuloplasty were reviewed retrospectively. Procedural data and clinical outcomes were assessed. RESULTS: Pulmonary valvuloplasty was successful in 59 patients (90.8%). Preterm birth, larger tricuspid valve annulus diameter and PA-IVS correlated with procedural failure. Eleven patients (18.6%) required a Blalock-Taussig shunt during early follow-up, despite valvuloplasty. These neonates had smaller tricuspid and pulmonary valve annulus Z-scores (-1.9 vs. -0.8 [p=0.04] and -2.5 vs. -0.9 [P=0.005], respectively) and a higher incidence of "bipartite" right ventricle (P=0.02). Mean follow-up was 5.4±3.3 years. Mortality after successful valvuloplasty was 8.5% (n=5). Among the 54 survivors, biventricular repair was achieved in 52 patients (96.3%), including nine with a previous Blalock-Taussig shunt. The cumulative rate of subsequent surgery (excluding Blalock-Taussig shunt) was 13.7% (95% confidence interval 6.8-26.7%) and 16.4% (95% confidence interval 8.5-30.4%) at 2 and 4 years, respectively. Secondary surgery was significantly more frequent in PA-IVS compared with DD-PVS, and in neonates with a Blalock-Taussig shunt (P=0.003 and 0.01, respectively). CONCLUSIONS: Selected neonates with DD-PVS or PA-IVS managed by transcatheter pulmonary valvuloplasty had a good mid-term outcome. In neonates with a borderline small right ventricle, a hybrid strategy with a supplementary source of pulmonary blood flow can be efficient to achieve biventricular repair.


Asunto(s)
Valvuloplastia con Balón/métodos , Cateterismo Cardíaco/métodos , Cardiopatías Congénitas/terapia , Atresia Pulmonar/terapia , Válvula Pulmonar/anomalías , Factores de Edad , Valvuloplastia con Balón/efectos adversos , Valvuloplastia con Balón/mortalidad , Cateterismo Cardíaco/efectos adversos , Cateterismo Cardíaco/mortalidad , Bases de Datos Factuales , Femenino , Cardiopatías Congénitas/diagnóstico por imagen , Cardiopatías Congénitas/mortalidad , Cardiopatías Congénitas/fisiopatología , Hemodinámica , Humanos , Recién Nacido , Masculino , Atresia Pulmonar/diagnóstico por imagen , Atresia Pulmonar/mortalidad , Atresia Pulmonar/fisiopatología , Circulación Pulmonar , Válvula Pulmonar/diagnóstico por imagen , Válvula Pulmonar/fisiopatología , Recuperación de la Función , Estudios Retrospectivos , Factores de Riesgo , Factores de Tiempo , Resultado del Tratamiento
16.
Circulation ; 139(7): 932-948, 2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30586714

RESUMEN

BACKGROUND: Monoallelic mutations in the gene encoding bone morphogenetic protein receptor 2 ( Bmpr2) are the main genetic risk factor for heritable pulmonary arterial hypertension (PAH) with incomplete penetrance. Several Bmpr2 transgenic mice have been reported to develop mild spontaneous PAH. In this study, we examined whether rats with the Bmpr2 mutation were susceptible to developing more severe PAH. METHODS: The zinc finger nuclease method was used to establish rat lines with mutations in the Bmpr2 gene. These rats were then characterized at the hemodynamic, histological, electrophysiological, and molecular levels. RESULTS: Rats with a monoallelic deletion of 71 bp in exon 1 (Δ 71 rats) showed decreased BMPRII expression and phosphorylated SMAD1/5/9 levels. Δ 71 Rats develop age-dependent spontaneous PAH with a low penetrance (16%-27%), similar to that in humans. Δ 71 Rats were more susceptible to hypoxia-induced pulmonary hypertension than wild-type rats. Δ 71 Rats exhibited progressive pulmonary vascular remodeling associated with a proproliferative phenotype and showed lower pulmonary microvascular density than wild-type rats. Organ bath studies revealed severe alteration of pulmonary artery contraction and relaxation associated with potassium channel subfamily K member 3 (KCNK3) dysfunction. High levels of perivascular fibrillar collagen and pulmonary interleukin-6 overexpression discriminated rats that developed spontaneous PAH and rats that did not develop spontaneous PAH. Finally, detailed assessments of cardiomyocytes demonstrated alterations in morphology, calcium (Ca2+), and cell contractility specific to the right ventricle; these changes could explain the lower cardiac output of Δ 71 rats. Indeed, adult right ventricular cardiomyocytes from Δ 71 rats exhibited a smaller diameter, decreased sensitivity of sarcomeres to Ca2+, decreased [Ca2+] transient amplitude, reduced sarcoplasmic reticulum Ca2+ content, and short action potential duration compared with right ventricular cardiomyocytes from wild-type rats. CONCLUSIONS: We characterized the first Bmpr2 mutant rats and showed some of the critical cellular and molecular dysfunctions described in human PAH. We also identified the heart as an unexpected but potential target organ of Bmpr2 mutations. Thus, this new genetic rat model represents a promising tool to study the pathogenesis of PAH.


Asunto(s)
Presión Arterial/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/fisiopatología , Mutación , Contracción Miocárdica/genética , Arteria Pulmonar/fisiopatología , Función Ventricular Derecha/genética , Potenciales de Acción , Animales , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/metabolismo , Señalización del Calcio , Modelos Animales de Enfermedad , Predisposición Genética a la Enfermedad , Hipertensión Pulmonar/metabolismo , Hipoxia/complicaciones , Miocitos Cardíacos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Fenotipo , Fosforilación , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Arteria Pulmonar/metabolismo , Ratas Mutantes , Proteínas Smad/metabolismo
17.
Int J Artif Organs ; 41(7): 385-392, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29749291

RESUMEN

OBJECTIVES: Mechanical circulatory support for pediatric heart failure patients with the Berlin Heart EXCOR ventricular assist system is the only approved and established bridging strategy for recovery or heart transplantation. In recent years, the burden of thromboembolic events has led to modifications of the recommended antithrombotic therapy. Therefore, we aimed to assess modifications of antithrombotic practice among the European EXCOR Pediatric Investigator Group members. METHODS: We sent a questionnaire assessing seven aspects of antithrombotic therapy to 18 European hospitals using the EXCOR device for children. Returned questionnaires were analyzed and identified antithrombotic strategies were descriptively compared to "Edmonton protocol" recommendations developed for the US EXCOR pediatric approval study. RESULTS: Analysis of 18 received surveys revealed substantial deviations from the Edmonton protocol, including earlier start of heparin therapy at 6-12 h postoperatively and in 50% of surveyed centers, monitoring of heparin effectiveness with aPTT assay, administering vitamin K antagonists before 12 months of age. About 39% of centers use higher international normalized ratio targets, and platelet inhibition is changed in 56% including the use of clopidogrel instead of dipyridamole. Significant inter-center variability with multiple deviations from the Edmonton protocol was discovered with only one center following the Edmonton protocol completely. CONCLUSION: Current antithrombotic practice among European EXCOR users representing the treatment of more than 600 pediatric patients has changed over time with a trend toward a more aggressive therapy. There is a need for systematic evidence-based evaluation and harmonization of developmentally adjusted antithrombotic management practices in prospective studies toward revised recommendations.


Asunto(s)
Fibrinolíticos/uso terapéutico , Insuficiencia Cardíaca/terapia , Corazón Auxiliar/efectos adversos , Trombosis/prevención & control , Adolescente , Niño , Preescolar , Femenino , Encuestas de Atención de la Salud , Insuficiencia Cardíaca/fisiopatología , Humanos , Lactante , Recién Nacido , Masculino , Estudios Prospectivos , Trombosis/etiología , Resultado del Tratamiento , Adulto Joven
18.
J Mol Cell Cardiol ; 118: 208-224, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29634917

RESUMEN

BACKGROUND: Right ventricular (RV) function is the most important prognostic factor for pulmonary arterial hypertension (PAH) patients. The progressive increase of pulmonary vascular resistance induces RV hypertrophy (RVH) and at term RV failure (RVF). However, the molecular mechanisms of RVH and RVF remain understudied. In this study, we gained insights into cytosolic Ca2+ signaling remodeling in ventricular cardiomyocytes during the pathogenesis of severe pulmonary hypertension (PH) induced in rats by monocrotaline (MCT) exposure, and we further identified molecular candidates responsible for this Ca2+ remodeling. METHODS AND RESULTS: After PH induction, hypertrophied RV myocytes presented longer action potential duration, higher and faster [Ca2+]i transients and increased sarcoplasmic reticulum (SR) Ca2+ content, whereas no changes in these parameters were detected in left ventricular (LV) myocytes. These modifications were associated with increased P-Ser16-phospholamban pentamer expression without altering SERCA2a (Sarco/Endoplasmic Reticulum Ca2+-ATPase) pump abundance. Moreover, after PH induction, Ca2+ sparks frequency were higher in hypertrophied RV cells, while total RyR2 (Ryanodine Receptor) expression and phosphorylation were unaffected. Together with cellular hypertrophy, the T-tubules network was disorganized. Hypertrophied RV cardiomyocytes from MCT-exposed rats showed decreased expression of classical STIM1 (Stromal Interaction molecule) associated with increased expression of muscle-specific STIM1 Long isoform, glycosylated-Orai1 channel form, and TRPC1 and TRPC4 channels, which was correlated with an enhanced Ca2+-release-activated Ca2+ (CRAC)-like current. Pharmacological inhibition of TRPCs/Orai1 channels in hypertrophied RV cardiomyocytes normalized [Ca2+]i transients amplitude, the SR Ca2+ content and cell contractility to control levels. Finally, we showed that most of these changes did not appear in LV cardiomyocytes. CONCLUSIONS: These new findings demonstrate RV-specific cellular Ca2+ cycling remodeling in PH rats with maladaptive RVH and that the STIM1L/Orai1/TRPC1/C4-dependent Ca2+ current participates in this Ca2+ remodeling in RVH secondary to PH.


Asunto(s)
Señalización del Calcio , Hipertrofia Ventricular Derecha/inducido químicamente , Hipertrofia Ventricular Derecha/genética , Proteína ORAI1/metabolismo , Molécula de Interacción Estromal 1/metabolismo , Canales Catiónicos TRPC/metabolismo , Regulación hacia Arriba , Animales , Calcio/metabolismo , Canales de Calcio/metabolismo , Capilares/patología , Fibrosis , Glicosilación , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/patología , Ventrículos Cardíacos/fisiopatología , Hipertrofia Ventricular Derecha/patología , Hipertrofia Ventricular Derecha/fisiopatología , Inflamación/complicaciones , Inflamación/patología , Monocrotalina , Miocitos Cardíacos/metabolismo , Isoformas de Proteínas/metabolismo , Ratas Wistar , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo
19.
Presse Med ; 47(7-8 Pt 1): 611-619, 2018.
Artículo en Francés | MEDLINE | ID: mdl-29580908

RESUMEN

Extracorporeal life support and heart and/or lung transplant are the last resort in children with end-stage cardiac and/or pulmonary failure and short-term life threaten. Currently, circulatory support is used as a bridge to recovery or as a bridge to transplant but not as a destination therapy. The Excor Berlin Heart is the long-lasting external pneumatic ventricular assist system that is currently available from infancy to adulthood. Long-term prognosis after pediatric cardiac and/or pulmonary transplant is conditioned by the occurrence of graft failure, coronary disease of the cardiac graft, viral infections and bronchiolitis obliterans of the pulmonary graft, the incidence of which increase with time. The scarcity of grafts and the risk of acute rejection due to lack of compliance with immunosuppressive treatment require the transplant specialized teams to choose the best candidates according to psychosocial and biological criteria. The next expected developments concern mainly long-term ventricular assistance with systems that allow for greater autonomy and a return to the child's home.


Asunto(s)
Oxigenación por Membrana Extracorpórea , Insuficiencia Cardíaca/cirugía , Trasplante de Corazón-Pulmón , Insuficiencia Respiratoria/cirugía , Niño , Oxigenación por Membrana Extracorpórea/ética , Oxigenación por Membrana Extracorpórea/instrumentación , Insuficiencia Cardíaca/complicaciones , Trasplante de Corazón-Pulmón/ética , Humanos , Insuficiencia Respiratoria/complicaciones
20.
Cardiovasc Res ; 114(6): 880-893, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29360952

RESUMEN

Aims: Mutations in the KCNK3 gene, which encodes for an outward-rectifier K+ channel, have been identified in patients suffering from pulmonary arterial hypertension (PAH), and constitute the first described channelopathy in PAH. In human PAH and experimental pulmonary hypertension (PH), we demonstrated that KCNK3 expression and function are severely reduced in pulmonary vascular cells, promoting PH-like phenotype at the morphologic and haemodynamic levels. Since KCNK3 channel is also expressed in both the human and rodent heart, we aimed to elucidate the pathophysiological role of KCNK3 channel in right ventricular (RV) hypertrophy (RVH) related to PH. Methods and results: Using whole-cell Patch-clamp technique, we demonstrated that KCNK3 is predominantly expressed in adult rat RV cardiomyocytes compared to the left ventricle cardiomyocytes and participates in the repolarizing phase of the RV action potential. We revealed a reduction in KCNK3 function prior to development of RVH and the rise of pulmonary vascular resistance. KCNK3 function is severely reduced in RV cardiomyocytes during the development of RVH in several rat models of PH (exposure to monocrotaline, chronic hypoxia, and Sugen/hypoxia) and chronic RV pressure overload (pulmonary artery banding). In experimental PH, we revealed a reduction in KCNK3 function before any rise in pulmonary vascular resistance and the development of RVH. KCNK3 mRNA level is also reduced in human RV tissues from PAH patients compared to non-PAH patients. In line with these findings, chronic inhibition of KCNK3 in rats with the specific inhibitor (A293) induces RV hypertrophy which is associated with the re-expression of foetal genes, RV fibrosis, RV inflammation, and subsequent loss of RV performance as assessed by echocardiography. Conclusion: Our data indicate that loss of KCNK3 function and expression is a hallmark of the RV hypertrophy/dysfunction associated with PH.


Asunto(s)
Hipertensión Pulmonar/metabolismo , Hipertrofia Ventricular Derecha/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Disfunción Ventricular Derecha/metabolismo , Función Ventricular Derecha , Remodelación Ventricular , Potenciales de Acción , Adolescente , Adulto , Animales , Estudios de Casos y Controles , Modelos Animales de Enfermedad , Regulación hacia Abajo , Femenino , Humanos , Hipertensión Pulmonar/complicaciones , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/fisiopatología , Hipertrofia Ventricular Derecha/etiología , Hipertrofia Ventricular Derecha/genética , Hipertrofia Ventricular Derecha/fisiopatología , Masculino , Persona de Mediana Edad , Miocitos Cardíacos/efectos de los fármacos , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/genética , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio de Dominio Poro en Tándem/antagonistas & inhibidores , Canales de Potasio de Dominio Poro en Tándem/genética , Ratas , Transducción de Señal , Sulfonamidas/farmacología , Factores de Tiempo , Disfunción Ventricular Derecha/etiología , Disfunción Ventricular Derecha/genética , Disfunción Ventricular Derecha/fisiopatología , Función Ventricular Derecha/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos , ortoaminobenzoatos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...