Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 14(10)2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38786851

RESUMEN

Metal nanoparticle phytosynthesis has become, in recent decades, one of the most promising alternatives for the development of nanomaterials using "green chemistry" methods. The present work describes, for the first time in the literature, the phytosynthesis of silver nanoparticles (AgNPs) using extracts obtained by two methods using the aerial parts of Marrubium vulgare L. The extracts (obtained by classical temperature extraction and microwave-assisted extraction) were characterized in terms of total phenolics content and by HPLC analysis, while the phytosynthesis process was confirmed using X-ray diffraction and transmission electron microscopy, the results suggesting that the classical method led to the obtaining of smaller-dimension AgNPs (average diameter under 15 nm by TEM). In terms of biological properties, the study confirmed that AgNPs as well as the M. vulgare crude extracts reduced the viability of human gingival fibroblasts in a concentration- and time-dependent manner, with microwave-assisted extracts having the more pronounced effects. Additionally, the study unveiled that AgNPs transiently increased nitric oxide levels which then decreased over time, thus offering valuable insights into their potential therapeutic use and safety profile.

2.
Int J Mol Sci ; 25(10)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38791232

RESUMEN

The treatment of chronic wounds involves precise requirements and complex challenges, as the healing process cannot go beyond the inflammatory phase, therefore increasing the healing time and implying a higher risk of opportunistic infection. Following a better understanding of the healing process, oxygen supply has been validated as a therapeutic approach to improve and speed up wound healing. Moreover, the local implications of antimicrobial agents (such as silver-based nano-compounds) significantly support the normal healing process, by combating bacterial contamination and colonization. In this study, silver (S) and tannylated calcium peroxide (CaO2@TA) nanoparticles were obtained by adapted microfluidic and precipitation synthesis methods, respectively. After complementary physicochemical evaluation, both types of nanoparticles were loaded in (Alg) alginate-based gels that were further evaluated as possible dressings for wound healing. The obtained composites showed a porous structure and uniform distribution of nanoparticles through the polymeric matrix (evidenced by spectrophotometric analysis and electron microscopy studies), together with a good swelling capacity. The as-proposed gel dressings exhibited a constant and suitable concentration of released oxygen, as shown for up to eight hours (UV-Vis investigation). The biofilm modulation data indicated a synergistic antimicrobial effect between silver and tannylated calcium peroxide nanoparticles, with a prominent inhibitory action against the Gram-positive bacterial biofilm after 48 h. Beneficial effects in the human keratinocytes cultured in contact with the obtained materials were demonstrated by the performed tests, such as MTT, LDH, and NO.


Asunto(s)
Alginatos , Peróxidos , Plata , Cicatrización de Heridas , Alginatos/química , Alginatos/farmacología , Cicatrización de Heridas/efectos de los fármacos , Humanos , Plata/química , Plata/farmacología , Peróxidos/química , Peróxidos/farmacología , Geles/química , Nanopartículas/química , Queratinocitos/efectos de los fármacos , Biopelículas/efectos de los fármacos , Nanopartículas del Metal/química , Antibacterianos/farmacología , Antibacterianos/química , Vendajes , Taninos/química , Taninos/farmacología
3.
Pharmaceutics ; 16(4)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38675186

RESUMEN

Melissa officinalis is an important medicinal plant that is used and studied intensively due to its numerous pharmacological effects. This plant has numerous active compounds with biomedical potential; some are volatile, while others are sensitive to heat or oxygen. Therefore, to increase stability and prolong biological activities, the natural extract can be loaded into various nanostructured systems. In this study, different loading systems were obtained from mesoporous silica, like Mobile Composition of Matter family (MCM) with a hexagonal (MCM-41) or cubic (MCM-48) pore structure, simple or functionalized with amino groups (using 3-aminopropyl) such as triethoxysilane (APTES). Thus, the four materials were characterized from morphological and structural points of view by scanning electron microscopy, a BET analysis with adsorption-desorption isotherms, Fourier-transform infrared spectroscopy (FTIR) and a thermogravimetric analysis coupled with differential scanning calorimetry. Natural extract from Melissa officinalis was concentrated and analyzed by High-Performance Liquid Chromatography to identify the polyphenolic compounds. The obtained materials were tested against Gram-negative bacteria and yeasts and against both reference strains and clinical strains belonging to Gram-positive bacteria that were previously isolated from intra-hospital infections. The highest antimicrobial efficiency was found against Gram-positive and fungal strains. Good activity was also recorded against methicillin-resistant S. aureus, the Melissa officinalis extract inhibiting the production of various virulence factors.

4.
Molecules ; 29(8)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38675662

RESUMEN

Membrane materials with osmium nanoparticles have been recently reported for bulk membranes and supported composite membrane systems. In the present paper, a catalytic material based on osmium dispersed in n-decanol (nD) or n-dodecanol (nDD) is presented, which also works as an emulsion membrane. The hydrogenation of p-nitrophenol (PNP) is carried out in a reaction and separation column in which an emulsion in the acid-receiving phase is dispersed in an osmium nanodispersion in n-alcohols. The variables of the PNP conversion process and p-aminophenol (PAP) transport are as follows: the nature of the membrane alcohol, the flow regime, the pH difference between the source and receiving phases and the number of operating cycles. The conversion results are in all cases better for nD than nDD. The counter-current flow regime is superior to the co-current flow. Increasing the pH difference between the source and receiving phases amplifies the process. The number of operating cycles is limited to five, after which the regeneration of the membrane dispersion is required. The apparent catalytic rate constant (kapp) of the new catalytic material based on the emulsion membrane with the nanodispersion of osmium nanoparticles (0.1 × 10-3 s-1 for n-dodecanol and 0.9 × 10-3 s-1 for n-decanol) is lower by an order of magnitude compared to those based on adsorption on catalysts from the platinum metal group. The advantage of the tested membrane catalytic material is that it extracts p-aminophenol in the acid-receiving phase.

5.
Diseases ; 12(2)2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38391785

RESUMEN

BACKGROUND: Catheter ablation (CA) for atrial fibrillation (AF) is superior to antiarrhythmic drugs in maintaining sinus rhythm. Novel evidence suggests that increasing the time between the first diagnosis of AF and ablation, or diagnosis-to-ablation time (DAT), is a predictor for AF recurrence post-ablation. PURPOSE: Our primary objective was to investigate the relationship between DAT and AF recurrence after a first ablation. METHODS: Patients with AF who underwent CA in our center were enrolled consecutively, and a retrospective analysis was performed. DAT was treated as a continuous variable and reported as a median for the group with recurrence and the group without recurrence. DAT was also considered as a categorical variable and patients were stratified into three categories: DAT < 1 year, DAT < 2 years, and DAT < 4 years. RESULTS: The cohort included 107 patients, with a mean age of 54.3 ± 11.7 years. Mean DAT was significantly longer in those with AF recurrence: 4.9(3.06) years versus 3.99(3.5) (p = 0.04). The Kaplan-Meier curve revealed a higher likelihood of AF-free status over time for patients with DAT < 2 years compared to those with DAT > 2 years (p = 0.04). Cox multivariate analysis indicated that left atrial volume index (LAVI), obstructive sleep apnoea (OSA), and DAT > 2 years were independently associated with AF recurrence after a single AF ablation procedure (p = 0.007, p = 0.02, and p = 0.03, respectively). CONCLUSION: A shorter duration between the first AF diagnosis and AF ablation is associated with an increased likelihood of procedural success after a single AF ablation procedure.

6.
Int J Mol Sci ; 25(4)2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38397066

RESUMEN

To modulate the bioactivity and boost the therapeutic outcome of implantable metallic devices, biodegradable coatings based on polylactide (PLA) and graphene oxide nanosheets (nGOs) loaded with Zinforo™ (Zin) have been proposed in this study as innovative alternatives for the local management of biofilm-associated periprosthetic infections. Using a modified Hummers protocol, high-purity and ultra-thin nGOs have been obtained, as evidenced by X-ray diffraction (XRD) and transmission electron microscopy (TEM) investigations. The matrix-assisted pulsed laser evaporation (MAPLE) technique has been successfully employed to obtain the PLA-nGO-Zin coatings. The stoichiometric and uniform transfer was revealed by infrared microscopy (IRM) and scanning electron microscopy (SEM) studies. In vitro evaluation, performed on fresh blood samples, has shown the excellent hemocompatibility of PLA-nGO-Zin-coated samples (with a hemolytic index of 1.15%), together with their anti-inflammatory ability. Moreover, the PLA-nGO-Zin coatings significantly inhibited the development of mature bacterial biofilms, inducing important anti-biofilm efficiency in the as-coated samples. The herein-reported results evidence the promising potential of PLA-nGO-Zin coatings to be used for the biocompatible and antimicrobial surface modification of metallic implants.


Asunto(s)
Antiinfecciosos , Grafito , Nanoestructuras , Grafito/farmacología , Poliésteres , Materiales Biocompatibles Revestidos/farmacología
7.
Heart Fail Rev ; 29(2): 523-534, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38282011

RESUMEN

Heart failure with preserved ejection fraction (HFpEF) has become an emerging concern. The protective effect of bradycardia in patients with reduced ejection fraction using beta-blockers or ivabradine does not improve symptoms in HFpEF. This review aims to assess current data regarding the impact of anti-bradycardia pacing in patients with HFpEF. A search was conducted on PubMed, ScienceDirect, Springer, and Wiley Online Library, selecting studies from 2013 to 2023. Relevant and eligible prospective studies and randomized controlled trials were included. Functional status, quality of life, and echocardiographic parameters were assessed. Six studies conformed to the selection criteria. Four were prospective studies with a total of 90 patients analyzed. Two were randomized controlled trials with a total of 129 patients assessed. The 6-min walk test (6MWT) and the Minnesota Living with Heart Failure Questionnaire (MLHFQ) score improved in all prospective studies. My-PACE trial showed improvements in MLHFQ score (p < 0.001), significant relative lowering in NT-proBNP levels (p = 0.02), and an increased mean daily activity in the personalized accelerated pacing group compared to usual care. RAPID-HF trial proved that pacemaker implantation to enhance exercise heart rate (HR) did not improve exercise capacity and was associated with increased adverse events. HFpEF requires a more individualized approach and quality of life management. This review demonstrates that higher resting HR by atrial pacing may improve symptoms and even outcomes in HFpEF, while a higher adaptive rate during exertion has not been proven beneficial.


Asunto(s)
Bradicardia , Insuficiencia Cardíaca , Humanos , Insuficiencia Cardíaca/complicaciones , Insuficiencia Cardíaca/terapia , Insuficiencia Cardíaca/diagnóstico , Función Ventricular Izquierda/fisiología , Volumen Sistólico/fisiología , Calidad de Vida , Estudios Prospectivos , Ensayos Clínicos Controlados Aleatorios como Asunto
8.
Am J Ther ; 31(1): e13-e23, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38231577

RESUMEN

BACKGROUND: Prediction of cardiac resynchronization therapy (CRT) response, particularly a super-response, is of great importance. STUDY QUESTION: The aim of our study was to assess the predictors for super-responders in CRT. STUDY DESIGN: We conducted a retrospective, observational study, which finally included 622 patients with heart failure treated with CRT between January 2008 and May 2020 who had a minimal follow-up of 6 months after CRT. MEASURES AND OUTCOMES: A total of 192 super-responders, defined by a left ventricular ejection fraction (LVEF) of at least 45%, and/or minimum 15% increase in LVEF and an improvement of the New York Heart Association functional class by at least 2 degrees at the last follow-up, and the rest of 430 patients who did not fulfill the super-responder criteria. RESULTS: The highest rate of super-responders (41.91%, n = 171) was at patients with left ventricle-only pacing with optimal fusion (OPT) compared with patients with biventricular (BiV) pacing (9.81%, n = 21, P < 0.000). In the OPT group, univariable analysis showed that nonischemic cardiomyopathy, a smaller degree of mitral regurgitation, and better left ventricle function at enrollment were predictors for super-response compared with the BiV group where a narrower QRS after implantation, nonischemic cardiomyopathy, and a better baseline LVEF were predictors for super-responders. In the multivariable analysis, both narrower QRS after implantation and nonischemic cardiomyopathy were independent predictors for super-response in the BiV group compared with OPT where nonischemic cardiomyopathy remained the only independent predictor for super-response. CONCLUSIONS: In this retrospective study, OPT CRT programing was an additional predictor of super-response to CRT besides nonischemic cardiomyopathy.


Asunto(s)
Terapia de Resincronización Cardíaca , Cardiomiopatías , Humanos , Estudios Retrospectivos , Volumen Sistólico , Función Ventricular Izquierda
9.
Nanomaterials (Basel) ; 13(22)2023 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-37999328

RESUMEN

A novel high-entropy perovskite powder with the composition Bi0.2K0.2Ba0.2Sr0.2Ca0.2TiO3 was successfully synthesized using a modified Pechini method. The precursor powder underwent characterization through Fourier Transform Infrared Spectroscopy and thermal analysis. The resultant Bi0.2K0.2Ba0.2Sr0.2Ca0.2TiO3 powder, obtained post-calcination at 900 °C, was further examined using a variety of techniques including X-ray diffraction, Raman spectroscopy, X-ray fluorescence, scanning electron microscopy, and transmission electron microscopy. Ceramic samples were fabricated by conventional sintering at various temperatures (900, 950, and 1000 °C). The structure, microstructure, and dielectric properties of these ceramics were subsequently analyzed and discussed. The ceramics exhibited a two-phase composition comprising cubic and tetragonal perovskites. The grain size was observed to increase from 35 to 50 nm, contingent on the sintering temperature. All ceramic samples demonstrated relaxor behavior with a dielectric maximum that became more flattened and shifted towards lower temperatures as the grain size decreased.

10.
Nanomaterials (Basel) ; 13(20)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37887945

RESUMEN

Magnetite nanoparticles (Fe3O4 NPs) are among the most investigated nanomaterials, being recognized for their biocompatibility, versatility, and strong magnetic properties. Given that their applicability depends on their dimensions, crystal morphology, and surface chemistry, Fe3O4 NPs must be synthesized in a controlled, simple, and reproducible manner. Since conventional methods often lack tight control over reaction parameters and produce materials with unreliable characteristics, increased scientific interest has been directed to microfluidic techniques. In this context, the present paper describes the development of an innovative 3D microfluidic platform suitable for synthesizing uniform Fe3O4 NPs with fine-tuned properties. On-chip co-precipitation was performed, followed by microwave-assisted silanization. The obtained nanoparticles were characterized from the compositional and microstructural perspectives by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Moreover, supplementary physicochemical investigations, such as Fourier Transform Infrared Spectroscopy (FT-IR), Kaiser Test, Ultraviolet-Visible (UV-Vis) Spectrophotometry, Dynamic Light Scattering (DLS), and Thermogravimetry and Differential Scanning Calorimetry (TG-DSC) analyses, demonstrated the successful surface modification. Considering the positive results, the presented synthesis and functionalization method represents a fast, reliable, and effective alternative for producing tailored magnetic nanoparticles.

11.
Gels ; 9(8)2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37623079

RESUMEN

Magnesium oxide (MgO) was synthesized by three different methods: the sol-gel (SG), microwave-assisted sol-gel (MW), and hydrothermal (HT) methods for comparing the influence of the preparation conditions on the properties of the products. The powders were annealed at 450 °C. The samples were characterized by X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM/HRTEM), selected area electron diffraction (SAED), energy-dispersive X-ray spectroscopy (EDX), BET specific surface area and porosity, photoluminescence, and UV-Vis spectroscopy. The samples consisted mainly of periclase as a crystalline phase, and the MW and HT preparation methods generated particles with higher specific surface areas. The powders had less-defined morphologies and high levels of aggregation. The optical band gaps of the samples were determined from UV DRS, and the photocatalytic activities of the magnesium oxides obtained by the three methods towards the degradation of methyl orange (MO) under UV light irradiation was evaluated.

12.
Polymers (Basel) ; 15(15)2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37571176

RESUMEN

The highest amount of the world's polyethylene terephthalate (PET) is designated for fiber production (more than 60%) and food packaging (30%) and it is one of the major polluting polymers. Although there is a great interest in recycling PET-based materials, a large amount of unrecycled material is derived mostly from the food and textile industries. The aim of this study was to obtain and characterize nanostructured membranes with fibrillar consistency based on recycled PET and nanoparticles (Fe3O4@UA) using the electrospinning technique. The obtained fibers limit microbial colonization and the development of biofilms. Such fibers could significantly impact modern food packaging and the design of improved textile fibers with antimicrobial effects and good biocompatibility. In conclusion, this study suggests an alternative for PET recycling and further applies it in the development of antimicrobial biomaterials.

13.
Int J Mol Sci ; 24(13)2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37446215

RESUMEN

Injuries and diseases of the skin require accurate treatment using nontoxic and noninvasive biomaterials, which aim to mimic the natural structures of the body. There is a strong need to develop biodevices capable of accommodating nutrients and bioactive molecules and generating the process of vascularization. Electrospinning is a robust technique, as it can form fibrous structures for tissue engineering and wound dressings. The best way of forming such meshes for wound healing is to choose two polymers that complement each other regarding their properties. On the one hand, PVA is a water-soluble synthetic polymer widely used for the preparation of hydrogels in the field of biomedicine owing to its biocompatibility, water solubility, nontoxicity, and considerable mechanical properties. PVA is easy to subject to electrospinning and can offer strong mechanical stability of the mesh, but it is necessary to improve its biological properties. On the other hand, CS has good biological properties, including biodegradability, nontoxicity, biocompatibility, and antimicrobial properties. Still, it is harder to electrospin and does not possess as good mechanical properties as PVA. As these structures also allow the incorporation of bioactive agents due to their high surface-area-to-volume ratio, the interesting point was to incorporate usnic acid into the structure as it is a natural and suitable alternative agent for burn wounds treatment which avoids an improper or overuse of antibiotics and other invasive biomolecules. Thus, we report the fabrication of an electrospun nanofibrous mesh based on PVA, chitosan, and usnic acid with applications in wound healing. The obtained nanofibers mesh was physicochemically characterized by Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). In vitro biological assays were performed to evaluate the antimicrobial properties of the samples using the MIC (minimum inhibitory concentration) assay and evaluating the influence of fabricated meshes on the Staphylococcus aureus biofilm development, as well as their biocompatibility (demonstrated by fluorescence microscopy results, an XTT assay, and a glutathione (GSH) assay).


Asunto(s)
Quitosano , Nanofibras , Quitosano/química , Nanofibras/química , Espectroscopía Infrarroja por Transformada de Fourier , Cicatrización de Heridas , Antibacterianos/química , Agua/química , Alcohol Polivinílico/química
14.
Int J Mol Sci ; 24(14)2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37511219

RESUMEN

The recognized antimicrobial activity of silver nanoparticles is a well-studied property, especially when designing and developing biomaterials with medical applications. As biological activity is closely related to the physicochemical characteristics of a material, aspects such as particle morphology and dimension should be considered. Microfluidic systems in continuous flow represent a promising method to control the size, shape, and size distribution of synthesized nanoparticles. Moreover, using microfluidics widens the synthesis options by creating and controlling parameters that are otherwise difficult to maintain in conventional batch procedures. This study used a microfluidic platform with a cross-shape design as an innovative method for synthesizing silver nanoparticles and varied the precursor concentration and the purging speed as experimental parameters. The compositional and microstructural characterization of the obtained samples was carried out by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and dynamic light scattering (DLS). Four formulations of alginate-based hydrogels with the addition of hyaluronic acid and silver nanoparticles were obtained to highlight the antimicrobial activity of silver nanoparticles and the efficiency of such a composite in wound treatment. The porous structure, swelling capacity, and biological properties were evaluated through physicochemical analysis (FT-IR and SEM) and through contact with prokaryotic and eukaryotic cells. The results of the physicochemical and biological investigations revealed desirable characteristics for performant wound dressings (i.e., biocompatibility, appropriate porous structure, swelling rate, and degradation rate, ability to inhibit biofilm formation, and cell growth stimulation capacity), and the obtained materials are thus recommended for treating chronic and infected wounds.


Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Ácido Hialurónico/química , Plata/farmacología , Plata/química , Microfluídica , Espectroscopía Infrarroja por Transformada de Fourier , Alginatos/química , Nanopartículas del Metal/química , Antiinfecciosos/farmacología , Vendajes , Antibacterianos/farmacología , Antibacterianos/química
15.
Pharmaceutics ; 15(6)2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37376176

RESUMEN

The production of highly porous and three-dimensional (3D) scaffolds with biomimicking abilities has gained extensive attention in recent years for tissue engineering (TE) applications. Considering the attractive and versatile biomedical functionality of silica (SiO2) nanomaterials, we propose herein the development and validation of SiO2-based 3D scaffolds for TE. This is the first report on the development of fibrous silica architectures, using tetraethyl orthosilicate (TEOS) and polyvinyl alcohol (PVA) during the self-assembly electrospinning (ES) processing (a layer of flat fibers must first be created in self-assembly electrospinning before fiber stacks can develop on the fiber mat). The compositional and microstructural characteristics of obtained fibrous materials were evaluated by complementary techniques, in both the pre-ES aging period and post-ES calcination. Then, in vivo evaluation confirmed their possible use as bioactive scaffolds in bone TE.

16.
Pharmaceutics ; 15(3)2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36986719

RESUMEN

Hydrogel-based dressings exhibit suitable features for successful wound healing, including flexibility, high water-vapor permeability and moisture retention, and exudate absorption capacity. Moreover, enriching the hydrogel matrix with additional therapeutic components has the potential to generate synergistic results. Thus, the present study centered on diabetic wound healing using a Matrigel-enriched alginate hydrogel embedded with polylactic acid (PLA) microspheres containing hydrogen peroxide (H2O2). The synthesis and physicochemical characterization of the samples, performed to evidence their compositional and microstructural features, swelling, and oxygen-entrapping capacity, were reported. For investigating the three-fold goal of the designed dressings (i.e., releasing oxygen at the wound site and maintaining a moist environment for faster healing, ensuring the absorption of a significant amount of exudate, and providing biocompatibility), in vivo biological tests on wounds of diabetic mice were approached. Evaluating multiple aspects during the healing process, the obtained composite material proved its efficiency for wound dressing applications by accelerating wound healing and promoting angiogenesis in diabetic skin injuries.

17.
J Clin Med ; 13(1)2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38202068

RESUMEN

INTRODUCTION: Catheter ablation (CA) for atrial fibrillation (AF) has been proven to have the highest efficacy in maintaining sinus rhythm. Several studies have proposed different scores for predicting post-procedural success, but most have not been validated in prospective cohorts. Further research is required to determine the optimal formulae. PURPOSE: This study aimed to identify independent predictors of AF recurrence after CA and develop a composite score. METHODS: Consecutive patients with persistent and paroxysmal AF who underwent CA were retrospectively analyzed. The independent predictors of recurrence were used to create a new predictive score. RESULTS: The cohort included 263 patients with a follow-up of 37.6 ± 23.4 months. Persistent AF, f-waves < 0.1 mV, indexed left atrium volume, the presence of type 2 diabetes, and smaller height were independent predictors of recurrence and were used to create a new scoring model, VAT-DHF (V = Volume, AT = AF Type, D = Diabetes, H = Height, F = f waves). The ROC curve for this new score showed an AUC of 0.869, p < 0.0001, 95% CI [0.802-0.936], while those for APPLE and CHA2DS2-VASc showed an AUC of 0.765, 95% CI [0.637-0.893] and an AUC of 0.655, 95% CI [0.580-0.730], respectively. Patients who had a VAT-DHF score between 0 and 3.25, 3.25 and 6, and ≥6, had success rates of 95.7%, 76.3%, and 25% (p < 0.0001), respectively. CONCLUSIONS: The novel VAT-DHF score is easy to calculate and may be a useful clinical tool for identifying patients with a low, intermediate, or high risk of AF recurrence after CA.

18.
Int J Mol Sci ; 25(1)2023 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-38203420

RESUMEN

Exploring silver-based and carbon-based nanomaterials' excellent intrinsic antipathogenic effects represents an attractive alternative for fabricating anti-infective formulations. Using chemical synthesis protocols, stearate-conjugated silver (Ag@C18) nanoparticles and graphene oxide nanosheets (nGOs) were herein obtained and investigated in terms of composition and microstructure. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterizations revealed the formation of nanomaterials with desirable physical properties, while X-ray diffraction (XRD) analyses confirmed the high purity of synthesized nanomaterials. Further, laser-processed Ag@C18-nGO coatings were developed, optimized, and evaluated in terms of biological and microbiological outcomes. The highly biocompatible Ag@C18-nGO nanostructured coatings proved suitable candidates for the local modulation of biofilm-associated periprosthetic infections.


Asunto(s)
Grafito , Nanoestructuras , Óxidos , Compuestos de Plata , Plata
19.
Int J Mol Sci ; 23(23)2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36499682

RESUMEN

Despite their great benefits for debilitated patients, indwelling devices are prone to become easily colonized by resident and opportunistic microorganisms, which have the ability to attach to their surfaces and form highly specialized communities called biofilms. These are extremely resistant to host defense mechanisms and antibiotics, leading to treatment failure and device replacement, but also to life-threatening complications. In this study, we aimed to optimize a silica (SiO2)-coated magnetite (Fe3O4)-based nanosystem containing the natural antimicrobial agent, eugenol (E), suitable for MAPLE (matrix-assisted pulsed laser evaporation) deposition as a bioactive coating for biomedical applications. X-ray diffraction, thermogravimetric analysis, Fourier-transform infrared spectroscopy, and transmission electron microscopy investigations were employed to characterize the obtained nanosystems. The in vitro tests evidenced the superior biocompatibility of such nanostructured coatings, as revealed by their non-cytotoxic activity and ability to promote cellular proliferation and sustain normal cellular development of dermal fibroblasts. Moreover, the obtained nanocoatings did not induce proinflammatory events in human blood samples. Our studies demonstrated that Fe3O4 NPs can improve the antimicrobial activity of E, while the use of a SiO2 matrix may increase its efficiency over prolonged periods of time. The Fe3O4@SiO2 nanosystems showed excellent biocompatibility, sustaining human dermal fibroblasts' viability, proliferation, and typical architecture. More, the novel coatings lack proinflammatory potential as revealed by the absence of proinflammatory cytokine expression in response to human blood sample interactions.


Asunto(s)
Acer , Antiinfecciosos , Nanoestructuras , Humanos , Dióxido de Silicio/farmacología , Dióxido de Silicio/química , Antiinfecciosos/farmacología , Antiinfecciosos/química , Nanoestructuras/química , Biopelículas
20.
Gels ; 8(11)2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36354619

RESUMEN

As a third-generation ß-lactam antibiotic, cefotaxime shows a broad-spectrum with Gram-positive and Gram-negative bacteria activity and is included in WHO's essential drug list. In order to obtain new materials with sustained release properties, the present research focuses on the study of cefotaxime absorption and desorption from different functionalized mesoporous silica supports. The MCM-41-type nanostructured mesoporous silica support was synthesized by sol-gel technique using a tetraethyl orthosilicate (TEOS) route and cetyltrimethylammonium bromide (CTAB) as a surfactant, at room temperature and normal pressure. The obtained mesoporous material (MCM-41 class) was characterized through nuclear magnetic resonance (NMR), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), N2 absorption-desorption (BET) and Fourier transform infrared spectroscopy (FT-IR), proving a good micro-structured homogeneity (SEM images), a high surface area (BET, 1029 m2/g) correlated with high silanolic activity (Q3/Q4 peak ratio from 29Si MAS-NMR), and an expected uniform hexagonal structure (2-3 nm, HRTEM). In order to non-destructively link the antibiotic compound on the solid phase, MCM-41 was further functionalized in two steps: with aminopropyl trimethoxysilane (APTMS) and glutaraldehyde (GA). Three cefotaxime-loaded materials were comparatively studied for low release capacity: the reference material with adsorbed cefotaxime on MCM-41, MCM-41/APS (aminopropyl silyl surface functionalization) adsorbed cefotaxime material, and APTMS-GA bounded MCM-41-cefotaxime material. The slow-release profiles were obtained by using an on-flow modified HPLC system. A significant improved release capacity was identified in the case of MCM-41/APS/GA-cefotaxime due to the covalent surface grafting of the biological active compound, recommending this class of materials as an effective carrier of bioactive compounds in wound dressing, anti-biofilm coatings, advanced drugs, and other related applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...