Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Commun Med (Lond) ; 3(1): 154, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37880389

RESUMEN

BACKGROUND: MCL-1 is a prosurvival B-cell lymphoma 2 family protein that plays a critical role in tumor maintenance and survival and can act as a resistance factor to multiple anticancer therapies. Herein, we describe the generation and characterization of the highly potent and selective MCL-1 inhibitor ABBV-467 and present findings from a first-in-human trial that included patients with relapsed/refractory multiple myeloma (NCT04178902). METHODS: Binding of ABBV-467 to human MCL-1 was assessed in multiple cell lines. The ability of ABBV-467 to induce tumor growth inhibition was investigated in xenograft models of human multiple myeloma and acute myelogenous leukemia. The first-in-human study was a multicenter, open-label, dose-escalation study assessing safety, pharmacokinetics, and efficacy of ABBV-467 monotherapy. RESULTS: Here we show that administration of ABBV-467 to MCL-1-dependent tumor cell lines triggers rapid and mechanism-based apoptosis. In vivo, intermittent dosing of ABBV-467 as monotherapy or in combination with venetoclax inhibits the growth of xenografts from human hematologic cancers. Results from a clinical trial evaluating ABBV-467 in patients with multiple myeloma based on these preclinical data indicate that treatment with ABBV-467 can result in disease control (seen in 1 patient), but may also cause increases in cardiac troponin levels in the plasma in some patients (seen in 4 of 8 patients), without other corresponding cardiac findings. CONCLUSIONS: The selectivity of ABBV-467 suggests that treatment-induced troponin release is a consequence of MCL-1 inhibition and therefore may represent a class effect of MCL-1 inhibitors in human patients.


Apoptosis is a type of cell death that removes abnormal cells from the body. Cancer cells can have increased levels of MCL-1, a protein that helps cells survive and prevents apoptosis. ABBV-467 is a new drug that blocks the action of MCL-1 (an MCL-1 inhibitor) and could promote apoptosis. In animal models, ABBV-467 led to cancer cell death and delayed tumor growth. ABBV-467 was also studied in a clinical trial in 8 patients with multiple myeloma, a blood cancer. In 1 patient, ABBV-467 treatment prevented the cancer from getting any worse for 8 months. However, in 4 out of 8 patients ABBV-467 increased the levels of troponin, a protein associated with damage to the heart. This concerning side effect may impact the future development of MCL-1 inhibitors as anticancer drugs.

2.
Expert Opin Drug Discov ; 18(7): 753-768, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37219915

RESUMEN

INTRODUCTION: Identifying effective cancer drugs remains an inefficient process. Drug efficacy in traditional preclinical cancer models translates poorly into therapy in the clinic. Implementation of preclinical models that incorporate the tumor microenvironment (TME) is needed to improve selection of active drugs prior to clinical trials. AREAS COVERED: Progression of cancer results from the behavior of cancer cells in concert with the host's histopathological background. Nonetheless, complex preclinical models with a relevant microenvironment have yet to become an integral part of drug development. This review discusses existing models and provides a synopsis of active areas of cancer drug development where implementation would be of value. Their contribution to finding therapeutics in immune oncology, angiogenesis, regulated cell death and targeting tumor fibroblasts as well as optimization of drug delivery, combination therapy, and biomarkers of efficacy is considered. EXPERT OPINION: Complex tumor models in vitro (CTMIVs) that mimic the organotypic architecture of neoplastic tumors have boosted research into TME influence on traditional cytoreductive chemotherapy as well as the detection of specific TME targets. Despite advances in technical prowess, CTMIVs can only address specific aspects of cancer pathophysiology.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Microambiente Tumoral , Neoplasias/patología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Sistemas de Liberación de Medicamentos/métodos , Desarrollo de Medicamentos
3.
Cancers (Basel) ; 14(18)2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36139619

RESUMEN

Predicting patient response to treatment and the onset of chemoresistance are still major challenges in oncology. Chemoresistance is deeply influenced by the complex cellular interactions occurring within the tumor microenvironment (TME), including metabolic crosstalk. We have previously shown that ex vivo tumor tissue cultures derived from ovarian carcinoma (OvC) resections retain the TME components for at least four weeks of culture and implemented assays for assessment of drug response. Here, we explored ex vivo patient-derived tumor tissue cultures to uncover metabolic signatures of chemosensitivity and/or resistance. Tissue cultures derived from nine OvC cases were challenged with carboplatin and paclitaxel, the standard-of-care chemotherapeutics, and the metabolic footprints were characterized by LC-MS. Partial least-squares discriminant analysis (PLS-DA) revealed metabolic signatures that discriminated high-responder from low-responder tissue cultures to ex vivo drug exposure. As a proof-of-concept, a set of potential metabolic biomarkers of drug response was identified based on the receiver operating characteristics (ROC) curve, comprising amino acids, fatty acids, pyrimidine, glutathione, and TCA cycle pathways. Overall, this work establishes an analytical and computational platform to explore metabolic features of the TME associated with response to treatment, which can leverage the discovery of biomarkers of drug response and resistance in OvC.

4.
Cancer Res ; 82(10): 1858-1869, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35298624

RESUMEN

Antibody-drug conjugates (ADC) have emerged as one of the pillars of clinical disease management in oncology. The biggest hurdle to widespread development and application of ADCs has been a narrow therapeutic index. Advances in antibody technologies and formats as well as novel linker and payload chemistries have begun to facilitate structural improvements to ADCs. However, the interplay of structural characteristics with physiologic and pharmacologic factors determining therapeutic success has garnered less attention. This review elaborates on the pharmacology of ADCs, the pathophysiology of cancerous tissues, and the reciprocal consequences on ADC properties and functions. While most currently approved ADCs utilize either microtubule inhibition or DNA damage as primary mechanisms of action, we present arguments to expand this repertoire and highlight the need for payload mechanisms that exploit disease-specific vulnerabilities. We promote the idea that the choice of antibody format, targeting antigen, linker properties, and payload of an ADC should be deliberately fit for purpose by taking the pathophysiology of disease and the specific pharmacology of the drug entity into account, thus allowing a higher probability of clinical success.


Asunto(s)
Antineoplásicos , Inmunoconjugados , Neoplasias , Anticuerpos/uso terapéutico , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Humanos , Inmunoconjugados/química , Inmunoconjugados/farmacología , Inmunoconjugados/uso terapéutico , Neoplasias/tratamiento farmacológico
5.
Haematologica ; 107(4): 825-835, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33853293

RESUMEN

Dysregulation of apoptotic machinery is one mechanism by which acute myeloid leukemia (AML) acquires a clonal survival advantage. B-cell lymphoma protein-2 (BCL2) overexpression is a common feature in hematologic malignancies. The selective BCL2 inhibitor, venetoclax (VEN) is used in combination with azacitidine (AZA), a DNAmethyltransferase inhibitor (DNMTi), to treat patients with AML. Despite promising response rates to VEN/AZA, resistance to the agent is common. One identified mechanism of resistance is the upregulation of myeloid cell leukemia-1 protein (MCL1). Pevonedistat (PEV), a novel agent that inhibits NEDD8-activating enzyme, and AZA both upregulate NOXA (PMAIP1), a BCL2 family protein that competes with effector molecules at the BH3 binding site of MCL1. We demonstrate that PEV/AZA combination induces NOXA to a greater degree than either PEV or AZA alone, which enhances VEN-mediated apoptosis. Herein, using AML cell lines and primary AML patient samples ex vivo, including in cells with genetic alterations linked to treatment resistance, we demonstrate robust activity of the PEV/VEN/AZA triplet. These findings were corroborated in preclinical systemic engrafted models of AML. Collectively, these results provide rational for combining PEV/VEN/AZA as a novel therapeutic approach in overcoming AML resistance in current therapies.


Asunto(s)
Azacitidina , Leucemia Mieloide Aguda , Azacitidina/farmacología , Azacitidina/uso terapéutico , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Ciclopentanos , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Pirimidinas , Sulfonamidas
6.
Cancers (Basel) ; 13(18)2021 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-34572922

RESUMEN

Colorectal cancer (CRC) is one of the most common cancers worldwide. Although short-term cultures of tumour sections and xenotransplants have been used to determine drug efficacy, the results frequently fail to confer clinically useful information. Biomarker discovery has changed the paradigm for advanced CRC, though the presence of a biomarker does not necessarily translate into therapeutic success. To improve clinical outcomes, translational models predictive of drug response are needed. We describe a simple method for the fast establishment of CRC patient-derived explant (CRC-PDE) cultures from different carcinogenesis pathways, employing agitation-based platforms. A total of 26 CRC-PDE were established and a subset was evaluated for viability (n = 23), morphology and genetic key alterations (n = 21). CRC-PDE retained partial tumor glandular architecture and microenvironment features were partially lost over 4 weeks of culture. Key proteins (p53 and Mismatch repair) and oncogenic driver mutations of the original tumours were sustained throughout the culture. Drug challenge (n = 5) revealed differential drug response from distinct CRC-PDE cases. These findings suggest an adequate representation of the original tumour and highlight the importance of detailed model characterisation. The preservation of key aspects of the CRC microenvironment and genetics supports CRC-PDE potential applicability in pre- and co-clinical settings, as long as temporal dynamics are considered.

7.
Sci Rep ; 11(1): 18571, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34535719

RESUMEN

The current standard preclinical oncology models are not able to fully recapitulate therapeutic targets and clinically relevant disease biology, evidenced by the 90% attrition rate of new therapies in clinical trials. Three-dimensional (3D) culture systems have the potential to enhance the relevance of preclinical models. However, the limitations of currently available cellular assays to accurately evaluate therapeutic efficacy in these models are hindering their widespread adoption. We assessed the compatibility of the lactate dehydrogenase (LDH) assay in 3D spheroid cultures against other commercially available readout methods. We developed a standardized protocol to apply the LDH assay to ex vivo cultures, considering the impact of culture growth dynamics. We show that accounting for growth rates and background release levels of LDH are sufficient to make the LDH assay a suitable methodology for longitudinal monitoring and endpoint assessment of therapeutic efficacy in both cell line-derived xenografts (xenospheres) and patient-derived explant cultures. This method has the added value of being non-destructive and not dependent on reagent penetration or manipulation of the parent material. The establishment of reliable readout methods for complex 3D culture systems will further the utility of these tumor models in preclinical and co-clinical drug development studies.


Asunto(s)
Ensayos de Selección de Medicamentos Antitumorales/métodos , L-Lactato Deshidrogenasa/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Descubrimiento de Drogas/métodos , Humanos , Ratones , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/metabolismo , Células Tumorales Cultivadas
8.
J Neurooncol ; 152(2): 233-243, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33517558

RESUMEN

PURPOSE: Depatux-m is an antibody drug conjugate (ADC) that targets and inhibits growth of cancer cells overexpressing the epidermal growth factor receptor (EGFR) or the 2-7 deletion mutant (EGFRvIII) in tumor models in vitro and in vivo. Treatment of patients suffering from relapsed/refractory glioblastoma (GBM) with a combination of depatux-m and temozolomide (TMZ) tended to increase overall survival. As a first step to understand the nature of the interaction between the two drugs, we investigated whether the interaction was synergistic, additive or antagonistic. METHODS: The efficacy of ADCs, antibodies, TMZ and radiation was tested in xenograft models of GBM, U-87MG and U-87MG EGFRvIII. Both models express EGFR. U-87MG EGFRvIII was transduced to express EGFRvIII. Changes in tumor volume, biomarkers of cell death and apoptosis after treatment were used to measure efficacy of the various treatments. Synergism of depatux-m and TMZ was verified in three-dimensional cultures of U-87MG and U-87MG EGFRvIII by the method of Chou and Talalay. RESULTS: Combined with TMZ and radiotherapy (RT), depatux-m inhibited xenograft growth of U-87MG and U-87MG EGFRvIII more than either treatment with depatux-m or TMZ + RT. Durability of the response to depatux-m + TMZ + RT or depatux-m + TMZ was more pronounced in U-87MG EGFRvIII than in U-87MG. Efficacy of depatux-m + TMZ was synergistic in U-87MG EGFRvIII and additive in U-87MG. CONCLUSION: Adding depatux-m enhances the efficacy of standard of care therapy in preclinical models of GBM. Durability of response to depatux-m + TMZ in vivo and synergy of the drug-drug interaction correlates with the amount of antigen expressed by the tumor cells.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias Encefálicas , Glioblastoma , Temozolomida/farmacología , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Receptores ErbB/genética , Glioblastoma/genética , Glioblastoma/patología , Humanos , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Sci Rep ; 10(1): 19462, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33173111

RESUMEN

Ovarian carcinoma (OvC) remains a major therapeutic challenge due to its propensity to develop resistance after an initial response to chemotherapy. Interactions of tumour cells with the surrounding microenvironment play a role in tumour survival, invasion capacity and drug resistance. Cancer models that retain tissue architecture and tumour microenvironment components are therefore essential to understand drug response and resistance mechanisms. Herein, our goal was to develop a long-term OvC patient-derived explant (OvC-PDE) culture strategy in which architecture and cell type heterogeneity of the original tumour would be retained. Samples from 25 patients with distinct OvC types and one with a benign tumour, were cultured for 30 days in agitation-based culture systems with 100% success rate. OvC-PDE cultures retained the original tumour architecture and main cellular components: epithelial cells, fibroblasts and immune cells. Epithelial cells kept their original levels of proliferation and apoptosis. Moreover, the major extracellular components, such as collagen-I and -IV, were retained in explants. OvC-PDE cultures were exposed to standard-of-care chemotherapeutics agents for 2 weeks, attesting the ability of the platform for drug assays employing cyclic drug exposure regimens. We established an OvC-PDE dynamic culture in which tumour architecture and cell type heterogeneity were preserved for the different OvC types, replicating features of the original tumour and compatible with long-term drug exposure for drug efficacy and resistance studies.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Células Epiteliales/patología , Fibroblastos/patología , Linfocitos Infiltrantes de Tumor/patología , Neoplasias Ováricas/patología , Adulto , Anciano , Anciano de 80 o más Años , Antineoplásicos/farmacología , Supervivencia Celular/efectos de los fármacos , Células Epiteliales/metabolismo , Femenino , Fibroblastos/metabolismo , Humanos , Antígeno Ki-67/análisis , Linfocitos Infiltrantes de Tumor/metabolismo , Persona de Mediana Edad , Neoplasias Ováricas/metabolismo , Factores de Tiempo , Células Tumorales Cultivadas
10.
ACS Med Chem Lett ; 11(10): 1829-1836, 2020 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-33062160

RESUMEN

Herein we describe the discovery of A-1331852, a first-in-class orally active BCL-XL inhibitor that selectively and potently induces apoptosis in BCL-XL-dependent tumor cells. This molecule was generated by re-engineering our previously reported BCL-XL inhibitor A-1155463 using structure-based drug design. Key design elements included rigidification of the A-1155463 pharmacophore and introduction of sp3-rich moieties capable of generating highly productive interactions within the key P4 pocket of BCL-XL. A-1331852 has since been used as a critical tool molecule for further exploring BCL-2 family protein biology, while also representing an attractive entry into a drug discovery program.

11.
Mol Cancer Ther ; 19(10): 2117-2125, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32847977

RESUMEN

ABBV-321 (serclutamab talirine), a next-generation EGFR-targeted antibody-drug conjugate (ADC) incorporates a potent pyrrolobenzodiazepine (PBD) dimer toxin conjugated to the EGFR-targeting ABT-806 affinity-matured AM1 antibody. ABBV-321 follows the development of related EGFR-targeted ADCs including depatuxizumab mafodotin (depatux-m, ABT-414), ABT-806 conjugated to monomethyl auristatin F (MMAF), and ABBV-221 (losatuxizumab vedotin), AM1 antibody conjugated to monomethyl auristatin E (MMAE). The distinct tumor selectivity of ABBV-321 differentiates it from many previous highly active antibody PBD conjugates that lack a therapeutic window. Potency of the PBD dimer, combined with increased binding of AM1 to EGFR-positive tumor cells, opens the possibility to target a wide array of tumors beyond those with high levels of EGFR overexpression or amplification, including those insensitive to auristatin-based ADCs. ABBV-321 exhibits potent antitumor activity in cellular and in vivo studies including xenograft cell line and patient-derived xenograft glioblastoma, colorectal, lung, head and neck, and malignant mesothelioma tumor models that are less sensitive to depatux-m or ABBV-221. Combination studies with ABBV-321 and depatux-m suggest a promising treatment option permitting suboptimal, and potentially better tolerated, doses of both ADCs while providing improved potency. Collectively, these data suggest that ABBV-321 may offer an extended breadth of efficacy relative to other EGFR ADCs while extending utility to multiple EGFR-expressing tumor indications. Despite its highly potent PBD dimer payload, the tumor selectivity of ABBV-321, coupled with its pharmacology, toxicology, and pharmacokinetic profiles, support continuation of ongoing phase I clinical trials in patients with advanced EGFR-expressing malignancies.


Asunto(s)
Receptores ErbB/metabolismo , Inmunoconjugados/uso terapéutico , Animales , Línea Celular Tumoral , Femenino , Humanos , Inmunoconjugados/farmacología , Ratones , Ratones Desnudos
12.
Clin Cancer Res ; 26(13): 3371-3383, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32054729

RESUMEN

PURPOSE: Patients with acute myeloid leukemia (AML) frequently do not respond to conventional therapies. Leukemic cell survival and treatment resistance have been attributed to the overexpression of B-cell lymphoma 2 (BCL-2) and aberrant DNA hypermethylation. In a phase Ib study in elderly patients with AML, combining the BCL-2 selective inhibitor venetoclax with hypomethylating agents 5-azacitidine (5-Aza) or decitabine resulted in 67% overall response rate; however, the underlying mechanism for this activity is unknown. EXPERIMENTAL DESIGN: We studied the consequences of combining two therapeutic agents, venetoclax and 5-Aza, in AML preclinical models and primary patient samples. We measured expression changes in the integrated stress response (ISR) and the BCL-2 family by Western blot and qPCR. Subsequently, we engineered PMAIP1 (NOXA)- and BBC3 (PUMA)-deficient AML cell lines using CRISPR-Cas9 methods to understand their respective roles in driving the venetoclax/5-Aza combinatorial activity. RESULTS: In this study, we demonstrate that venetoclax and 5-Aza act synergistically to kill AML cells in vitro and display combinatorial antitumor activity in vivo. We uncover a novel nonepigenetic mechanism for 5-Aza-induced apoptosis in AML cells through transcriptional induction of the proapoptotic BH3-only protein NOXA. This induction occurred within hours of treatment and was mediated by the ISR pathway. NOXA was detected in complex with antiapoptotic proteins, suggesting that 5-Aza may be "priming" the AML cells for venetoclax-induced apoptosis. PMAIP1 knockout confirmed its major role in driving venetoclax and 5-Aza synergy. CONCLUSIONS: These data provide a novel nonepigenetic mechanism of action for 5-Aza and its combinatorial activity with venetoclax through the ISR-mediated induction of PMAIP1.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/genética , Azacitidina/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/genética , Sulfonamidas/farmacología , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Línea Celular Tumoral , Metilación de ADN , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Humanos , Leucemia Mieloide Aguda , Ratones , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
14.
Mol Cancer Ther ; 17(4): 795-805, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29483208

RESUMEN

Depatuxizumab mafodotin (depatux-m, ABT-414) is a tumor-selective antibody drug conjugate (ADC) comprised of the anti-EGFR antibody ABT-806 and the monomethyl auristatin F (MMAF) warhead. Depatux-m has demonstrated promising clinical activity in glioblastoma multiforme (GBM) patients and is currently being evaluated in clinical trials in first-line and recurrent GBM disease settings. Depatux-m responses have been restricted to patients with amplified EGFR, highlighting the need for therapies with activity against tumors with nonamplified EGFR overexpression. In addition, depatux-m dosing has been limited by corneal side effects common to MMAF conjugates. We hypothesized that a monomethyl auristatin E (MMAE) ADC utilizing an EGFR-targeting antibody with increased affinity may have broader utility against tumors with more modest EGFR overexpression while mitigating the risk of corneal side effects. We describe here preclinical characterization of ABBV-221, an EGFR-targeting ADC comprised of an affinity-matured ABT-806 conjugated to MMAE. ABBV-221 binds to a similar EGFR epitope as depatux-m and retains tumor selectivity with increased binding to EGFR-positive tumor cells and greater in vitro potency. ABBV-221 displays increased tumor uptake and antitumor activity against wild-type EGFR-positive xenografts with a greatly reduced incidence of corneal side effects relative to depatux-m. ABBV-221 has similar activity as depatux-m against an EGFR-amplified GBM patient derived xenograft (PDX) model and is highly effective alone and in combination with standard-of-care temozolomide in an EGFRvIII-positive GBM xenograft model. Based on these results, ABBV-221 has advanced to a phase I clinical trial in patients with advanced solid tumors associated with elevated levels of EGFR. Mol Cancer Ther; 17(4); 795-805. ©2018 AACR.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacología , Glioblastoma/tratamiento farmacológico , Inmunoconjugados/farmacología , Oligopéptidos/química , Animales , Anticuerpos Monoclonales Humanizados/química , Apoptosis , Proliferación Celular , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/inmunología , Femenino , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Inmunoconjugados/química , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Sci Data ; 4: 170170, 2017 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-29160867

RESUMEN

Two-dimensional (2D) culture of cancer cells in vitro does not recapitulate the three-dimensional (3D) architecture, heterogeneity and complexity of human tumors. More representative models are required that better reflect key aspects of tumor biology. These are essential studies of cancer biology and immunology as well as for target validation and drug discovery. The Innovative Medicines Initiative (IMI) consortium PREDECT (www.predect.eu) characterized in vitro models of three solid tumor types with the goal to capture elements of tumor complexity and heterogeneity. 2D culture and 3D mono- and stromal co-cultures of increasing complexity, and precision-cut tumor slice models were established. Robust protocols for the generation of these platforms are described. Tissue microarrays were prepared from all the models, permitting immunohistochemical analysis of individual cells, capturing heterogeneity. 3D cultures were also characterized using image analysis. Detailed step-by-step protocols, exemplary datasets from the 2D, 3D, and slice models, and refined analytical methods were established and are presented.


Asunto(s)
Modelos Biológicos , Neoplasias , Técnicas de Cultivo de Célula , Humanos , Imagenología Tridimensional
16.
Neoplasia ; 19(9): 695-706, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28787674

RESUMEN

Improving the congruity of preclinical models with cancer as it is manifested in humans is a potential way to mitigate the high attrition rate of new cancer therapies in the clinic. In this regard, three-dimensional (3D) tumor cultures in vitro have recently regained interest as they have been acclaimed to have higher similarity to tumors in vivo than to cells grown in monolayers (2D). To identify cancer functions that are active in 3D rather than in 2D cultures, we compared the transcriptional profiles (TPs) of two non-small cell lung carcinoma cell lines, NCI-H1650 and EBC-1 grown in both conditions to the TP of xenografted tumors. Because confluence, diameter or volume can hypothetically alter TPs, we made intra- and inter-culture comparisons using samples with defined dimensions. As projected by Ingenuity Pathway Analysis (IPA), a limited number of signal transduction pathways operational in vivo were better represented by 3D than by 2D cultures in vitro. Growth of 2D and 3D cultures as well as xenografts induced major changes in the TPs of these 3 modes of culturing. Alterations of transcriptional network activation that were predicted to evolve similarly during progression of 3D cultures and xenografts involved the following functions: hypoxia, proliferation, cell cycle progression, angiogenesis, cell adhesion, and interleukin activation. Direct comparison of TPs of 3D cultures and xenografts to monolayer cultures yielded up-regulation of networks involved in hypoxia, TGF and Wnt signaling as well as regulation of epithelial mesenchymal transition. Differences in TP of 2D and 3D cancer cell cultures are subject to progression of the cultures. The emulation of the predicted cell functions in vivo is therefore not only determined by the type of culture in vitro but also by the confluence or diameter of the 2D or 3D cultures, respectively. Consequently, the successful implementation of 3D models will require phenotypic characterization to verify the relevance of applying these models for drug development.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Transcriptoma , Animales , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Análisis por Conglomerados , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica , Xenoinjertos , Humanos , Ratones , Esferoides Celulares
17.
Pharmacology ; 100(5-6): 229-242, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28743107

RESUMEN

ABT-700 is a therapeutic antibody against the hepatocyte growth factor receptor (MET). At doses or regimens that lead to exposures exceeding optimum in vivo, the efficacy of ABT-700 is unexpectedly reduced. We hypothesized that this reduction in efficacy was due to a "prozone-like" effect in vivo. A prozone-like effect, which is a reduction in efficacy beyond optimum exposure, is caused due a mechanism similar to the generation of false negative flocculation tests by excessive antibody titres. In vitro, we demonstrate that at higher ABT-700 concentrations, this "prozone-like" effect is mediated by a progressive conversion from bivalent to ineffective monovalent binding of the antibody. In vivo, the efficacy of ABT-700 is dependent on an optimum range of exposure as well. Our data suggest that the "prozone-like" effect is operative and independent of target expression. ABT-700 dose, regimen, exposure, and tumor burden are interdependent variables influencing the "prozone-like" effect and mediating and in vivo efficacy. By optimization of dosage and regimen we demonstrate that the "prozone-like" effect can be alleviated and ABT-700 efficacy at varying tumor loads can be further extended in combination with cisplatin. Our results suggest that optimization of exposure taking tumor burden into account may alleviate "prozone-like" effects without compromising efficacy.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Proteínas Proto-Oncogénicas c-met/metabolismo , Animales , Línea Celular , Cisplatino/administración & dosificación , Humanos , Ratones , Ratones Desnudos , Ratones SCID
18.
Clin Cancer Res ; 23(4): 992-1000, 2017 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-27573171

RESUMEN

Purpose: Despite the importance of the MET oncogene in many malignancies, clinical strategies targeting c-Met have benefitted only small subsets of patients with tumors driven by signaling through the c-Met pathway, thereby necessitating selection of patients with MET amplification and/or c-Met activation most likely to respond. An ADC targeting c-Met could overcome these limitations with potential as a broad-acting therapeutic.Experimental Design: ADC ABBV-399 was generated with the c-Met-targeting antibody, ABT-700. Antitumor activity was evaluated in cancer cells with overexpressed c-Met or amplified MET and in xenografts including patient-derived xenograft (PDX) models and those refractory to other c-Met inhibitors. The correlation between c-Met expression and sensitivity to ABBV-399 in tumor and normal cell lines was assessed to evaluate the risk of on-target toxicity.Results: A threshold level of c-Met expressed by sensitive tumor but not normal cells is required for significant ABBV-399-mediated killing of tumor cells. Activity extends to c-Met or amplified MET cell line and PDX models where significant tumor growth inhibition and regressions are observed. ABBV-399 inhibits growth of xenograft tumors refractory to other c-Met inhibitors and provides significant therapeutic benefit in combination with standard-of-care chemotherapy.Conclusions: ABBV-399 represents a novel therapeutic strategy to deliver a potent cytotoxin to c-Met-overexpressing tumor cells enabling cell killing regardless of reliance on MET signaling. ABBV-399 has progressed to a phase I study where it has been well tolerated and has produced objective responses in c-Met-expressing non-small cell lung cancer (NSCLC) patients. Clin Cancer Res; 23(4); 992-1000. ©2016 AACR.


Asunto(s)
Anticuerpos Monoclonales/administración & dosificación , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Proteínas Proto-Oncogénicas c-met/genética , Animales , Anticuerpos Monoclonales/efectos adversos , Proliferación Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Células MCF-7 , Ratones , Neoplasias/inmunología , Neoplasias/patología , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Biotechnol J ; 12(1)2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27966285

RESUMEN

There is cumulating evidence that in vitro 3D tumor models with increased physiological relevance can improve the predictive value of pre-clinical research and ultimately contribute to achieve decisions earlier during the development of cancer-targeted therapies. Due to the role of tumor microenvironment in the response of tumor cells to therapeutics, the incorporation of different elements of the tumor niche on cell model design is expected to contribute to the establishment of more predictive in vitro tumor models. This review is focused on the several challenges and adjustments that the field of oncology research is facing to translate these advanced tumor cells models to drug discovery, taking advantage of the progress on culture technologies, imaging platforms, high throughput and automated systems. The choice of 3D cell model, the experimental design, choice of read-outs and interpretation of data obtained from 3D cell models are critical aspects when considering their implementation in drug discovery. In this review, we foresee some of these aspects and depict the potential directions of pre-clinical oncology drug discovery towards improved prediction of drug efficacy.


Asunto(s)
Antineoplásicos/farmacología , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales/métodos , Animales , Antineoplásicos/administración & dosificación , Técnicas de Cultivo de Célula/instrumentación , Técnicas de Cultivo de Célula/métodos , Técnicas de Cocultivo , Descubrimiento de Drogas , Humanos , Células del Estroma/citología , Células del Estroma/patología , Microambiente Tumoral
20.
Sci Rep ; 6: 28951, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27364600

RESUMEN

Two-dimensional (2D) cell cultures growing on plastic do not recapitulate the three dimensional (3D) architecture and complexity of human tumors. More representative models are required for drug discovery and validation. Here, 2D culture and 3D mono- and stromal co-culture models of increasing complexity have been established and cross-comparisons made using three standard cell carcinoma lines: MCF7, LNCaP, NCI-H1437. Fluorescence-based growth curves, 3D image analysis, immunohistochemistry and treatment responses showed that end points differed according to cell type, stromal co-culture and culture format. The adaptable methodologies described here should guide the choice of appropriate simple and complex in vitro models.


Asunto(s)
Técnicas de Cocultivo/métodos , Esferoides Celulares/citología , Línea Celular Tumoral , Humanos , Imagenología Tridimensional , Células MCF-7 , Células del Estroma/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...