Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 11(42): 20045-20057, 2019 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-31612183

RESUMEN

Improved delivery materials are needed to enable siRNA transport across biological barriers, including the blood-brain barrier (BBB), to treat diseases like brain cancer. We engineered bioreducible nanoparticles for systemic siRNA delivery to patient-derived glioblastoma cells in an orthotopic mouse tumor model. We first utilized a newly developed biomimetic in vitro model to evaluate and optimize the performance of the engineered bioreducible nanoparticles at crossing the brain microvascular endothelium. We performed transmission electron microscopy imaging which indicated that the engineered nanoparticles are able to cross the BBB endothelium via a vesicular mechanism. The nanoparticle formulation engineered to best cross the BBB model in vitro led to safe delivery across the BBB to the brain in vivo. The nanoparticles were internalized by human brain cancer cells, released siRNA to the cytosol via environmentally-triggered degradation, and gene silencing was obtained both in vitro and in vivo. This study opens new frontiers for the in vitro evaluation and engineering of nanomedicines for delivery to the brain, and reports a systemically administered biodegradable nanocarrier for oligonucleotide delivery to treat glioma.


Asunto(s)
Barrera Hematoencefálica , Neoplasias Encefálicas , Sistemas de Liberación de Medicamentos , Silenciador del Gen , Glioblastoma , Nanopartículas , ARN Interferente Pequeño , Animales , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Masculino , Ratones , Ratones Desnudos , Nanopartículas/química , Nanopartículas/uso terapéutico , ARN Interferente Pequeño/química , ARN Interferente Pequeño/farmacocinética , ARN Interferente Pequeño/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
2.
J Cereb Blood Flow Metab ; 39(8): 1413-1432, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31208241

RESUMEN

The metabolic demands of the brain are met by oxygen and glucose, supplied by a complex hierarchical network of microvessels (arterioles, capillaries, and venules). Transient changes in neural activity are accommodated by local dilation of arterioles or capillaries to increase cerebral blood flow and hence nutrient availability. Transport and communication between the circulation and the brain is regulated by the brain microvascular endothelial cells that form the blood-brain barrier. Under homeostatic conditions, there is very little turnover in brain microvascular endothelial cells, and the cerebrovascular architecture is largely static. However, changes in the brain microenvironment, due to environmental factors, disease, or trauma, can result in additive or subtractive changes in cerebrovascular architecture. Additions occur by angiogenesis or vasculogenesis, whereas subtractions occur by vascular pruning, injury, or endothelial cell death. Here we review the various processes that lead to changes in the cerebrovascular architecture, including sustained changes in the brain microenvironment, development and aging, and injury, disease, and repair.


Asunto(s)
Barrera Hematoencefálica/fisiología , Encéfalo/irrigación sanguínea , Encéfalo/fisiología , Circulación Cerebrovascular/fisiología , Acoplamiento Neurovascular/fisiología , Animales , Humanos
3.
Biomaterials ; 190-191: 24-37, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30391800

RESUMEN

Microvessels of the blood-brain barrier (BBB) regulate transport into the brain. The highly specialized brain microvascular endothelial cells, a major component of the BBB, express tight junctions and efflux transporters which regulate paracellular and transcellular permeability. However, most existing models of BBB microvessels fail to exhibit physiological barrier function. Here, using (iPSC)-derived human brain microvascular endothelial cells (dhBMECs) within templated type I collagen channels we mimic the cylindrical geometry, cell-extracellular matrix interactions, and shear flow typical of human brain post-capillary venules. We characterize the structure and barrier function in comparison to non-brain-specific microvessels, and show that dhBMEC microvessels recapitulate physiologically low solute permeability and quiescent endothelial cell behavior. Transcellular permeability is increased two-fold using a clinically relevant dose of a p-glycoprotein inhibitor tariquidar, while paracellular permeability is increased using a bolus dose of hyperosmolar agent mannitol. Lastly, we show that our human BBB microvessels are responsive to inflammatory cytokines via upregulation of surface adhesion molecules and increased leukocyte adhesion, but no changes in permeability. Human iPSC-derived blood-brain barrier microvessels support quantitative analysis of barrier function and endothelial cell dynamics in quiescence and in response to biologically- and clinically-relevant perturbations.


Asunto(s)
Barrera Hematoencefálica/citología , Células Endoteliales/citología , Células Madre Pluripotentes Inducidas/citología , Microvasos/citología , Barrera Hematoencefálica/metabolismo , Permeabilidad Capilar , Diferenciación Celular , Línea Celular , Células Endoteliales/metabolismo , Diseño de Equipo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Microvasos/metabolismo , Ingeniería de Tejidos/instrumentación , Ingeniería de Tejidos/métodos
4.
Microcirculation ; 24(5)2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28164421

RESUMEN

Advances in tissue engineering, cell biology, microfabrication, and microfluidics have led to the development of a wide range of vascular models. Here, we review platforms based on templated microvessel fabrication to generate increasingly complex vascular models of (i) the tumor microenvironment, (ii) occluded microvessels, and (iii) perfused capillary networks. We outline fabrication guidelines and demonstrate a number of experimental methods for probing vascular function such as permeability measurements, tumor cell intravasation, flow characterization, and endothelial cell morphology and proliferation.


Asunto(s)
Microvasos , Modelos Cardiovasculares , Ingeniería de Tejidos/métodos , Endotelio Vascular , Humanos
5.
Integr Biol (Camb) ; 8(9): 976-84, 2016 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-27523481

RESUMEN

Here we report on real-time imaging and quantitative analysis of solute transport in perfusable cylindrical microvessels formed from Madin-Darby canine kidney (MDCK) cells embedded in a collagen matrix. Fluorescence microscopy was used to image the kinetics of doxorubicin transport following injection. To assess the role of efflux pumps on transport, experiments were performed in microvessels formed from MDCK.2, MDCKII-w/t, and MDCKII-MDR1 cells. MDCKII-w/t and MDCKII-MDR1 showed significant doxorubicin accumulation in the cells, characteristic of the pharmacokinetics of doxorubicin. We present a model for doxorubicin transport that takes into account transport across the cell layer. These results demonstrate how real-time imaging of cell microvessels can be used to analyze the mechanisms of transport and distribution following systemic delivery.


Asunto(s)
Doxorrubicina/farmacocinética , Evaluación Preclínica de Medicamentos/instrumentación , Análisis de Inyección de Flujo/instrumentación , Dispositivos Laboratorio en un Chip , Microscopía Fluorescente/instrumentación , Microvasos/metabolismo , Animales , Sistemas de Computación , Perros , Doxorrubicina/administración & dosificación , Evaluación Preclínica de Medicamentos/métodos , Diseño de Equipo , Análisis de Falla de Equipo , Análisis de Inyección de Flujo/métodos , Células de Riñón Canino Madin Darby , Microvasos/citología , Imagen de Perfusión/instrumentación , Imagen de Perfusión/métodos
6.
Lab Chip ; 15(22): 4242-55, 2015 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-26364747

RESUMEN

A wide range of perfusable microvessel models have been developed, exploiting advances in microfabrication, microfluidics, biomaterials, stem cell technology, and tissue engineering. These models vary in complexity and physiological relevance, but provide a diverse tool kit for the study of vascular phenomena and methods to vascularize artificial organs. Here we review the state-of-the-art in perfusable microvessel models, summarizing the different fabrication methods and highlighting advantages and limitations.


Asunto(s)
Endotelio Vascular/citología , Técnicas Analíticas Microfluídicas , Modelos Biológicos , Animales , Humanos , Técnicas Analíticas Microfluídicas/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA