Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Gene ; 824: 146394, 2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35278633

RESUMEN

Detailed knowledge of structures of yeast RNA polymerases (RNAPs) contrasts with the limited information that is available on the control of their assembly. RNAP enzymes are large heteromeric complexes that function in the nucleus, but they are assembled in the cytoplasm and imported to the nucleus with help from specific auxiliary factors. Here, I review a recent study that suggests that the formation of an early-stage assembly intermediate of the RNAP III complex occurs through a co-translational mechanism. According to our hypothesis, RNAP III assembly might be seeded while the Rpb10 subunit of the enzyme core is being synthesized by cytoplasmic ribosome machinery. The co-translational assembly of RNAP III is mediated by Rbs1 protein which binds to 3'-untranslated regions in mRNA in a way that depends on the R3H domain in the Rbs1 sequence.


Asunto(s)
ARN Polimerasa III , Proteínas de Saccharomyces cerevisiae , Regiones no Traducidas 3' , Núcleo Celular/genética , Núcleo Celular/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasa III/genética , ARN Polimerasa III/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Gene ; 809: 146034, 2022 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-34688816

RESUMEN

We previously reported the function of Rbs1 protein in RNA polymerase III complex assembly via interactions with both, proteins and mRNAs. Rbs1 is a poly(A)-binding protein. The R3H domain in Rbs1 is required for mRNA interactions. The present study utilized the results of a genome-wide analysis of RNA binding by Rbs1 to show a direct interaction between Rbs1 with the 5'-untranslated region (5'-UTR) in PCL5 mRNA. By examining Pcl5 protein levels, we found that Rbs1 overproduction inhibited the translation of PCL5 mRNA. Pcl5 is a cyclin that is associated with Pho85 kinase, which is involved in the degradation of Gcn4 transcription factor. Consequently, lower levels of Pcl5 that resulted from Rbs1 overproduction increased the Gcn4 response. The functional R3H domain in Rbs1 was required for the downregulation of Pcl5 translation and increase in the Gcn4 response, thus validating a regulatory mechanism that relies on the interaction between Rbs1 and the 5'-UTR in PCL5 mRNA. Rbs1 protein was further characterized by microscopy, which identified single Rbs1 assemblies in part of the cell population. The presence of Rbs1 aggregates was confirmed by the fractionation of cellular extracts. Altogether, our results suggest a more general role of Rbs1 in regulating cellular metabolism beyond the assembly of RNA polymerase III.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Regiones no Traducidas 5' , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Ciclinas/genética , Ciclinas/metabolismo , Regulación Fúngica de la Expresión Génica , Complejos Multiproteicos/metabolismo , Agregado de Proteínas/genética , ARN Polimerasa III/metabolismo , ARN Mensajero/genética , Proteínas de Saccharomyces cerevisiae/genética
3.
Int J Mol Sci ; 22(14)2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34298922

RESUMEN

The coordinated transcription of the genome is the fundamental mechanism in molecular biology. Transcription in eukaryotes is carried out by three main RNA polymerases: Pol I, II, and III. One basic problem is how a decrease in tRNA levels, by downregulating Pol III efficiency, influences the expression pattern of protein-coding genes. The purpose of this study was to determine the mRNA levels in the yeast mutant rpc128-1007 and its overdose suppressors, RBS1 and PRT1. The rpc128-1007 mutant prevents assembly of the Pol III complex and functionally mimics similar mutations in human Pol III, which cause hypomyelinating leukodystrophies. We applied RNAseq followed by the hierarchical clustering of our complete RNA-seq transcriptome and functional analysis of genes from the clusters. mRNA upregulation in rpc128-1007 cells was generally stronger than downregulation. The observed induction of mRNA expression was mostly indirect and resulted from the derepression of general transcription factor Gcn4, differently modulated by suppressor genes. rpc128-1007 mutation, regardless of the presence of suppressors, also resulted in a weak increase in the expression of ribosome biogenesis genes. mRNA genes that were downregulated by the reduction of Pol III assembly comprise the proteasome complex. In summary, our results provide the regulatory links affected by Pol III assembly that contribute differently to cellular fitness.


Asunto(s)
ARN Polimerasa III/genética , ARN Mensajero/genética , Saccharomyces cerevisiae/genética , ARN Polimerasas Dirigidas por ADN/genética , Regulación hacia Abajo/genética , Regulación Fúngica de la Expresión Génica/genética , Humanos , ARN Polimerasa II/genética , ARN de Transferencia/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Transcripción Genética/genética , Activación Transcripcional/genética , Transcriptoma/genética , Regulación hacia Arriba/genética
4.
Front Mol Biosci ; 8: 680090, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34055890

RESUMEN

RNA polymerase I (RNAPI) and RNAPIII are multi-heterogenic protein complexes that specialize in the transcription of highly abundant non-coding RNAs, such as ribosomal RNA (rRNA) and transfer RNA (tRNA). In terms of subunit number and structure, RNAPI and RNAPIII are more complex than RNAPII that synthesizes thousands of different mRNAs. Specific subunits of the yeast RNAPI and RNAPIII form associated subcomplexes that are related to parts of the RNAPII initiation factors. Prior to their delivery to the nucleus where they function, RNAP complexes are assembled at least partially in the cytoplasm. Yeast RNAPI and RNAPIII share heterodimer Rpc40-Rpc19, a functional equivalent to the αα homodimer which initiates assembly of prokaryotic RNAP. In the process of yeast RNAPI and RNAPIII biogenesis, Rpc40 and Rpc19 form the assembly platform together with two small, bona fide eukaryotic subunits, Rpb10 and Rpb12. We propose that this assembly platform is co-translationally seeded while the Rpb10 subunit is synthesized by cytoplasmic ribosome machinery. The translation of Rpb10 is stimulated by Rbs1 protein, which binds to the 3'-untranslated region of RPB10 mRNA and hypothetically brings together Rpc19 and Rpc40 subunits to form the αα-like heterodimer. We suggest that such a co-translational mechanism is involved in the assembly of RNAPI and RNAPIII complexes.

5.
Nucleic Acids Res ; 48(21): 12252-12268, 2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33231687

RESUMEN

The biogenesis of eukaryotic RNA polymerases is poorly understood. The present study used a combination of genetic and molecular approaches to explore the assembly of RNA polymerase III (Pol III) in yeast. We identified a regulatory link between Rbs1, a Pol III assembly factor, and Rpb10, a small subunit that is common to three RNA polymerases. Overexpression of Rbs1 increased the abundance of both RPB10 mRNA and the Rpb10 protein, which correlated with suppression of Pol III assembly defects. Rbs1 is a poly(A)mRNA-binding protein and mutational analysis identified R3H domain to be required for mRNA interactions and genetic enhancement of Pol III biogenesis. Rbs1 also binds to Upf1 protein, a key component in nonsense-mediated mRNA decay (NMD) and levels of RPB10 mRNA were increased in a upf1Δ strain. Genome-wide RNA binding by Rbs1 was characterized by UV cross-linking based approach. We demonstrated that Rbs1 directly binds to the 3' untranslated regions (3'UTRs) of many mRNAs including transcripts encoding Pol III subunits, Rpb10 and Rpc19. We propose that Rbs1 functions by opposing mRNA degradation, at least in part mediated by NMD pathway. Orthologues of Rbs1 protein are present in other eukaryotes, including humans, suggesting that this is a conserved regulatory mechanism.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Genoma Fúngico , ARN Helicasas/genética , ARN Polimerasa III/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Regiones no Traducidas 3' , Secuencia de Aminoácidos , Secuencia Conservada , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Humanos , Degradación de ARNm Mediada por Codón sin Sentido , Unión Proteica/efectos de la radiación , ARN Helicasas/metabolismo , ARN Polimerasa III/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Rayos Ultravioleta
6.
Mol Cell Biol ; 40(1)2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31658995

RESUMEN

Mycophenolic acid (MPA) is the active metabolite of mycophenolate mofetil, a drug that is widely used for immunosuppression in organ transplantation and autoimmune diseases, as well as anticancer chemotherapy. It inhibits IMP dehydrogenase, a rate-limiting enzyme in de novo synthesis of guanidine nucleotides. MPA treatment interferes with transcription elongation, resulting in a drastic reduction of pre-rRNA and pre-tRNA synthesis, the disruption of the nucleolus, and consequently cell cycle arrest. Here, we investigated the mechanism whereby MPA inhibits RNA polymerase III (Pol III) activity, in both yeast and mammalian cells. We show that MPA rapidly inhibits Pol III by depleting GTP. Although MPA treatment can activate p53, this is not required for Pol III transcriptional inhibition. The Pol III repressor MAF1 is also not responsible for inhibiting Pol III in response to MPA treatment. We show that upon MPA treatment, the levels of selected Pol III subunits decrease, but this is secondary to transcriptional inhibition. Chromatin immunoprecipitation (ChIP) experiments show that Pol III does not fully dissociate from tRNA genes in yeast treated with MPA, even though there is a sharp decrease in the levels of newly transcribed tRNAs. We propose that in yeast, GTP depletion may lead to Pol III stalling.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Inmunosupresores/farmacología , Ácido Micofenólico/farmacología , ARN Polimerasa III/antagonistas & inhibidores , ARN de Transferencia/genética , Transcripción Genética/efectos de los fármacos , Animales , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Ratones , Células RAW 264.7 , ARN Polimerasa III/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Cell Cycle ; 18(4): 500-510, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30760101

RESUMEN

Assembly of the RNA polymerases in both yeast and humans is proposed to occur in the cytoplasm prior to their nuclear import. Our previous studies identified a cold-sensitive mutation, rpc128-1007, in the yeast gene encoding the second largest Pol III subunit, Rpc128. rpc128-1007 is associated with defective assembly of Pol III complex and, in consequence, decreased level of tRNA synthesis. Here, we show that rpc128-1007 mutant cells remain largely unbudded and larger than wild type cells. Flow cytometry revealed that most rpc128-1007 mutant cells have G1 DNA content, suggesting that this mutation causes pronounced cell cycle delay in the G1 phase. Increased expression of gene encoding Rbs1, the Pol III assembly/import factor, could counteract G1 arrest observed in the rpc128-1007 mutant and restore wild type morphology of mutant cells. Concomitantly, cells lacking Rbs1 show a mild delay in G1 phase exit, indicating that Rbs1 is required for timely cell cycle progression. Using the double rpc128-1007 maf1Δ mutant in which tRNA synthesis is recovered, we confirmed that the Pol III assembly defect associated with rpc128-1007 is a primary cause of cell cycle arrest. Together our results indicate that impairment of Pol III complex assembly is coupled to cell cycle inhibition in the G1 phase.


Asunto(s)
Fase G1 , ARN Polimerasa III/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/metabolismo , Citoplasma/metabolismo , Regulación Fúngica de la Expresión Génica , Mutación , ARN Polimerasa III/genética , ARN de Transferencia/biosíntesis , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/metabolismo , Transcripción Genética
8.
Biochim Biophys Acta Gene Regul Mech ; 1862(1): 25-34, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30342998

RESUMEN

Respiratory growth and various stress conditions repress RNA polymerase III (Pol III) transcription in Saccharomyces cerevisiae. Here we report a degradation of the largest Pol III catalytic subunit, C160 as a consequence of Pol III transcription repression. We observed C160 degradation in response to transfer of yeast from fermentation to respiration conditions, as well as treatment with rapamycin or inhibition of nucleotide biosynthesis. We also detected ubiquitylated forms of C160 and demonstrated that C160 protein degradation is dependent on proteasome activity. A comparable time-course study of Pol III repression upon metabolic shift from fermentation to respiration shows that the transcription inhibition is correlated with Pol III dissociation from chromatin but that the degradation of C160 subunit is a downstream event. Despite blocking degradation of C160 by proteasome, Pol III-transcribed genes are under proper regulation. We postulate that the degradation of C160 is activated under stress conditions to reduce the amount of existing Pol III complex and prevent its de novo assembly.


Asunto(s)
Subunidades de Proteína/metabolismo , ARN Polimerasa III/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico/fisiología , Complejo de la Endopetidasa Proteasomal/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Transcripción Genética , Ubiquitinación
9.
Nucleic Acids Res ; 46(18): 9444-9455, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30053100

RESUMEN

Transcription of transfer RNA genes by RNA polymerase III (Pol III) is controlled by general factors, TFIIIB and TFIIIC, and a negative regulator, Maf1. Here we report the interplay between TFIIIC and Maf1 in controlling Pol III activity upon the physiological switch of yeast from fermentation to respiration. TFIIIC directly competes with Pol III for chromatin occupancy as demonstrated by inversely correlated tDNA binding. The association of TFIIIC with tDNA was stronger under unfavorable respiratory conditions and in the presence of Maf1. Induction of tDNA transcription by glucose-activated protein kinase A (PKA) was correlated with the down-regulation of TFIIIC occupancy on tDNA. The conditions that activate the PKA signaling pathway promoted the binding of TFIIIB subunits, Brf1 and Bdp1, with tDNA, but decreased their interaction with TFIIIC. Association of Brf1 and Bdp1 with TFIIIC was much stronger under repressive conditions, potentially restricting TFIIIB recruitment to tDNA and preventing Pol III recruitment. Altogether, we propose a model in which, depending on growth conditions, TFIIIC promotes activation or repression of tDNA transcription.


Asunto(s)
ARN de Transferencia/genética , Factores de Transcripción TFIII/fisiología , Transcripción Genética , Respiración de la Célula/genética , Fermentación/genética , Regulación Fúngica de la Expresión Génica , Silenciador del Gen , ARN Polimerasa III/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factor de Transcripción TFIIIB/genética , Factor de Transcripción TFIIIB/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional/genética
11.
Biochim Biophys Acta Gene Regul Mech ; 1861(4): 320-329, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29378333

RESUMEN

The synthesis of transfer RNA (tRNA) is directed by RNA polymerase III (Pol III) specialized in high-level transcription of short DNA templates. Pol III recruitment to tRNA genes is controlled by two general initiation factors, TFIIIB and TFIIIC. They are multi-protein complexes regulated at the level of expression of individual subunits, as well as through phosphorylation and interaction with partner proteins. Here, we describe particular aspects of TFIIIB and TFIIIC control in yeast and human cells. Under stress conditions, tRNA synthesis is negatively regulated by the MAF1 protein, which interacts directly with Pol III. Sequence and function of MAF1 are conserved among eukaryotic organisms from yeast to humans. MAF1 is a phosphoprotein which mediates diverse regulatory signals to Pol III. Interestingly, there is a subset of housekeeping tRNA genes, both in the yeast and human genome, which are less sensitive to MAF1-dependent repression. The possible mechanisms responsible for this differential regulation of tRNA synthesis by MAF1 are discussed.


Asunto(s)
Regulación de la Expresión Génica , Factores de Transcripción Maf/genética , ARN de Transferencia/biosíntesis , Factor de Transcripción TFIIIB/genética , Factores de Transcripción TFIII/genética , Transcripción Genética , Animales , Regulación Fúngica de la Expresión Génica , Humanos , Mamíferos/genética , Mamíferos/metabolismo , Ratones , Fosforilación , Procesamiento Proteico-Postraduccional , ARN Polimerasa II/metabolismo , ARN Polimerasa III/metabolismo , ARN de Transferencia/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Open Biol ; 7(2)2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28228471

RESUMEN

RNA polymerase III (Pol III) transcribes a limited set of short genes in eukaryotes producing abundant small RNAs, mostly tRNA. The originally defined yeast Pol III transcriptome appears to be expanding owing to the application of new methods. Also, several factors required for assembly and nuclear import of Pol III complex have been identified recently. Models of Pol III based on cryo-electron microscopy reconstructions of distinct Pol III conformations reveal unique features distinguishing Pol III from other polymerases. Novel concepts concerning Pol III functioning involve recruitment of general Pol III-specific transcription factors and distinctive mechanisms of transcription initiation, elongation and termination. Despite the short length of Pol III transcription units, mapping of transcriptionally active Pol III with nucleotide resolution has revealed strikingly uneven polymerase distribution along all genes. This may be related, at least in part, to the transcription factors bound at the internal promoter regions. Pol III uses also a specific negative regulator, Maf1, which binds to polymerase under stress conditions; however, a subset of Pol III genes is not controlled by Maf1. Among other RNA polymerases, Pol III machinery represents unique features related to a short transcript length and high transcription efficiency.


Asunto(s)
Eucariontes/genética , ARN Polimerasa III/metabolismo , ARN de Transferencia/metabolismo , Eucariontes/enzimología , Conformación Proteica , ARN Polimerasa III/química , Proteínas Represoras/metabolismo , Transcripción Genética
13.
Gene ; 612: 12-18, 2017 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-27575455

RESUMEN

In eukaryotic cells tRNA synthesis is negatively regulated by the protein Maf1, conserved from yeast to humans. Maf1 from yeast Saccharomyces cerevisiae mediates repression of trna transcription when cells are transferred from medium with glucose to medium with glycerol, a non-fermentable carbon source. The strain with deleted gene encoding Maf1 (maf1Δ) is viable but accumulates tRNA precursors. In this study tRNA precursors were analysed by RNA-Seq and Northern hybridization in wild type strain and maf1Δ mutant grown in glucose medium or upon shift to repressive conditions. A negative effect of maf1Δ mutant on the addition of the auxiliary CCA nucleotides to the 3' end of pre-tRNAs was observed in cells shifted to unfavourable growth conditions. This effect was reduced by overexpression of the yeast CCA1 gene encoding ATP(CTP):tRNA nucleotidyltransferase. The CCA sequence at the 3' end is important for export of tRNA precursors from the nucleus and essential for tRNA charging with amino acids. Data presented here indicate that CCA-addition to intron-containing end-processed tRNA precursors is a limiting step in tRNA maturation when there is no Maf1 mediated RNA polymerase III (Pol III) repression. The correlation between CCA synthesis and Pol III regulation by Maf1 could be important in coordination of tRNA transcription, processing and regulation of translation.


Asunto(s)
ARN Polimerasa III/metabolismo , ARN de Transferencia/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , ARN de Transferencia/química
14.
Genome Res ; 26(7): 933-44, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27206856

RESUMEN

RNA polymerase III (RNAPIII) synthesizes a range of highly abundant small stable RNAs, principally pre-tRNAs. Here we report the genome-wide analysis of nascent transcripts attached to RNAPIII under permissive and restrictive growth conditions. This revealed strikingly uneven polymerase distributions across transcription units, generally with a predominant 5' peak. This peak was higher for more heavily transcribed genes, suggesting that initiation site clearance is rate-limiting during RNAPIII transcription. Down-regulation of RNAPIII transcription under stress conditions was found to be uneven; a subset of tRNA genes showed low response to nutrient shift or loss of the major transcription regulator Maf1, suggesting potential "housekeeping" roles. Many tRNA genes were found to generate long, 3'-extended forms due to read-through of the canonical poly(U) terminators. The degree of read-through was anti-correlated with the density of U-residues in the nascent tRNA, and multiple, functional terminators can be located far downstream. The steady-state levels of 3'-extended pre-tRNA transcripts are low, apparently due to targeting by the nuclear surveillance machinery, especially the RNA binding protein Nab2, cofactors for the nuclear exosome, and the 5'-exonuclease Rat1.


Asunto(s)
ARN Polimerasa III/fisiología , ARN de Transferencia/genética , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/enzimología , Regulación Fúngica de la Expresión Génica , Genoma Fúngico , ARN de Transferencia/metabolismo , Saccharomyces cerevisiae/genética , Análisis de Secuencia de ARN , Regiones Terminadoras Genéticas , Transcripción Genética
15.
RNA ; 22(3): 339-49, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26729922

RESUMEN

tRNA is essential for translation and decoding of the proteome. The yeast proteome responds to stress and tRNA biosynthesis contributes in this response by repression of tRNA transcription and alterations of tRNA modification. Here we report that the stress response also involves processing of pre-tRNA 3' termini. By a combination of Northern analyses and RNA sequencing, we show that upon shift to elevated temperatures and/or to glycerol-containing medium, aberrant pre-tRNAs accumulate in yeast cells. For pre-tRNAUAU(Ile) and pre-tRNAUUU Lys) these aberrant forms are unprocessed at the 5' ends, but they possess extended 3' termini. Sequencing analyses showed that partial 3' processing precedes 5' processing for pre-tRNAUAU(Ile). An aberrant pre-tRNA(Tyr) that accumulates also possesses extended 3' termini, but it is processed at the 5' terminus. Similar forms of these aberrant pre-tRNAs are detected in the rex1Δ strain that is defective in 3' exonucleolytic trimming of pre-tRNAs but are absent in the lhp1Δ mutant lacking 3' end protection. We further show direct correlation between the inhibition of 3' end processing rate and the stringency of growth conditions. Moreover, under stress conditions Rex1 nuclease seems to be limiting for 3' end processing, by decreased availability linked to increased protection by Lhp1. Thus, our data document complex 3' processing that is inhibited by stress in a tRNA-type and condition-specific manner. This stress-responsive tRNA 3' end maturation process presumably contributes to fine-tune the levels of functional tRNA in budding yeast in response to environmental conditions.


Asunto(s)
Precursores del ARN/genética , Procesamiento Postranscripcional del ARN , ARN de Hongos/genética , ARN de Transferencia/genética , Saccharomyces cerevisiae/genética , Secuencia de Bases , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Precursores del ARN/química , ARN de Hongos/química , ARN de Transferencia/química
16.
Mol Cell Biol ; 35(7): 1169-81, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25605335

RESUMEN

Little is known about the RNA polymerase III (Pol III) complex assembly and its transport to the nucleus. We demonstrate that a missense cold-sensitive mutation, rpc128-1007, in the sequence encoding the C-terminal part of the second largest Pol III subunit, C128, affects the assembly and stability of the enzyme. The cellular levels and nuclear concentration of selected Pol III subunits were decreased in rpc128-1007 cells, and the association between Pol III subunits as evaluated by coimmunoprecipitation was also reduced. To identify the proteins involved in Pol III assembly, we performed a genetic screen for suppressors of the rpc128-1007 mutation and selected the Rbs1 gene, whose overexpression enhanced de novo tRNA transcription in rpc128-1007 cells, which correlated with increased stability, nuclear concentration, and interaction of Pol III subunits. The rpc128-1007 rbs1Δ double mutant shows a synthetic growth defect, indicating that rpc128-1007 and rbs1Δ function in parallel ways to negatively regulate Pol III assembly. Rbs1 physically interacts with a subset of Pol III subunits, AC19, AC40, and ABC27/Rpb5. Additionally, Rbs1 interacts with the Crm1 exportin and shuttles between the cytoplasm and nucleus. We postulate that Rbs1 binds to the Pol III complex or subcomplex and facilitates its translocation to the nucleus.


Asunto(s)
ARN Polimerasa III/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Secuencia de Bases , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Mapas de Interacción de Proteínas , Subunidades de Proteína/análisis , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Transporte de Proteínas , ARN Polimerasa III/análisis , ARN Polimerasa III/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/análisis , Regulación hacia Arriba
18.
Biochim Biophys Acta ; 1843(6): 1103-10, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24576411

RESUMEN

Yeast Fba1 (fructose 1,6-bisphosphate aldolase) is a glycolytic enzyme essential for viability. The overproduction of Fba1 enables overcoming of a severe growth defect caused by a missense mutation rpc128-1007 in a gene encoding the C128 protein, the second largest subunit of the RNA polymerase III complex. The suppression of the growth phenotype by Fba1 is accompanied by enhanced de novo tRNA transcription in rpc128-1007 cells. We inactivated residues critical for the catalytic activity of Fba1. Overproduction of inactive aldolase still suppressed the rpc128-1007 phenotype, indicating that the function of this glycolytic enzyme in RNA polymerase III transcription is independent of its catalytic activity. Yeast Fba1 was determined to interact with the RNA polymerase III complex by coimmunoprecipitation. Additionally, a role of aldolase in control of tRNA transcription was confirmed by ChIP experiments. The results indicate a novel direct relationship between RNA polymerase III transcription and aldolase.


Asunto(s)
Fructosa-Bifosfato Aldolasa/metabolismo , ARN Polimerasa III/metabolismo , ARN de Transferencia/metabolismo , Saccharomyces cerevisiae/genética , Transcripción Genética , Northern Blotting , Western Blotting , Núcleo Celular/metabolismo , Cromatina/genética , Inmunoprecipitación de Cromatina , Citoplasma/metabolismo , Técnica del Anticuerpo Fluorescente , Fructosa-Bifosfato Aldolasa/genética , Inmunoprecipitación , Mutagénesis Sitio-Dirigida , Mutación/genética , ARN Polimerasa III/genética , ARN Mensajero/genética , ARN de Transferencia/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo
19.
Wiley Interdiscip Rev RNA ; 4(6): 709-22, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24039171

RESUMEN

tRNA biogenesis in yeast involves the synthesis of the initial transcript by RNA polymerase III followed by processing and controlled degradation in both the nucleus and the cytoplasm. A vast landscape of regulatory elements controlling tRNA stability in yeast has emerged from recent studies. Diverse pathways of tRNA maturation generate multiple stable and unstable intermediates. A significant impact on tRNA stability is exerted by a variety of nucleotide modifications. Pre-tRNAs are targets of exosome-dependent surveillance in the nucleus. Some tRNAs that are hypomodified or bear specific destabilizing mutations are directed to the rapid tRNA decay pathway leading to 5'→3' exonucleolytic degradation by Rat1 and Xrn1. tRNA molecules are selectively marked for degradation by a double CCA at their 3' ends. In addition, under different stress conditions, tRNA half-molecules can be generated by independent endonucleolytic cleavage events. Recent studies reveal unexpected relationships between the subsequent steps of tRNA biosynthesis and the mechanisms controlling its quality and turnover.


Asunto(s)
Procesamiento Postranscripcional del ARN/genética , Estabilidad del ARN/genética , ARN de Transferencia/biosíntesis , Transcripción Genética , Núcleo Celular/genética , Citoplasma/genética , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , ARN Polimerasa III/genética , ARN de Transferencia/genética , Saccharomyces cerevisiae/genética
20.
Gene ; 526(1): 16-22, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23657116

RESUMEN

Maf1 is a negative regulator of RNA polymerase III (Pol III) in yeast. Maf1-depleted cells manifest elevated tRNA transcription and inability to grow on non-fermentable carbon source, such as glycerol. Using genomic microarray approach, we examined the effect of Maf1 deletion on expression of Pol II-transcribed genes in yeast grown in medium containing glycerol. We found that transcription of FBP1 and PCK1, two major genes controlling gluconeogenesis, was decreased in maf1Δ cells. FBP1 is located on chromosome XII in close proximity to a tRNA-Lys gene. Accordingly we hypothesized that decreased FBP1 mRNA level could be due to the effect of Maf1 on tgm silencing (tRNA gene mediated silencing). Two approaches were used to verify this hypothesis. First, we inactivated tRNA-Lys gene on chromosome XII by inserting a deletion cassette in a control wild type strain and in maf1Δ mutant. Second, we introduced a point mutation in the promoter of the tRNA-Lys gene cloned with the adjacent FBP1 in a plasmid and expressed in fbp1Δ or fbp1Δ maf1Δ cells. The levels of FBP1 mRNA were determined by RT-qPCR in each strain. Although the inactivation of the chromosomal tRNA-Lys gene increased expression of the neighboring FBP1, the mutation preventing transcription of the plasmid-born tRNA-Lys gene had no significant effect on FBP1 transcription. Taken together, those results do not support the concept of tgm silencing of FBP1. Other possible mechanisms are discussed.


Asunto(s)
Fructosa-Bifosfatasa/metabolismo , Genes Fúngicos , Gluconeogénesis/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Fructosa-Bifosfatasa/genética , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Mutación , Fosfoenolpiruvato Carboxiquinasa (ATP)/genética , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , ARN Polimerasa III/metabolismo , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , ARN de Transferencia de Lisina/genética , ARN de Transferencia de Lisina/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...