Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Microbiome ; 19(1): 48, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39020395

RESUMEN

Seasonal floodplains in the Amazon basin are important sources of methane (CH4), while upland forests are known for their sink capacity. Climate change effects, including shifts in rainfall patterns and rising temperatures, may alter the functionality of soil microbial communities, leading to uncertain changes in CH4 cycling dynamics. To investigate the microbial feedback under climate change scenarios, we performed a microcosm experiment using soils from two floodplains (i.e., Amazonas and Tapajós rivers) and one upland forest. We employed a two-factorial experimental design comprising flooding (with non-flooded control) and temperature (at 27 °C and 30 °C, representing a 3 °C increase) as variables. We assessed prokaryotic community dynamics over 30 days using 16S rRNA gene sequencing and qPCR. These data were integrated with chemical properties, CH4 fluxes, and isotopic values and signatures. In the floodplains, temperature changes did not significantly affect the overall microbial composition and CH4 fluxes. CH4 emissions and uptake in response to flooding and non-flooding conditions, respectively, were observed in the floodplain soils. By contrast, in the upland forest, the higher temperature caused a sink-to-source shift under flooding conditions and reduced CH4 sink capability under dry conditions. The upland soil microbial communities also changed in response to increased temperature, with a higher percentage of specialist microbes observed. Floodplains showed higher total and relative abundances of methanogenic and methanotrophic microbes compared to forest soils. Isotopic data from some flooded samples from the Amazonas river floodplain indicated CH4 oxidation metabolism. This floodplain also showed a high relative abundance of aerobic and anaerobic CH4 oxidizing Bacteria and Archaea. Taken together, our data indicate that CH4 cycle dynamics and microbial communities in Amazonian floodplain and upland forest soils may respond differently to climate change effects. We also highlight the potential role of CH4 oxidation pathways in mitigating CH4 emissions in Amazonian floodplains.

2.
Mol Ecol ; 32(12): 3257-3275, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36896778

RESUMEN

Deforestation threatens the integrity of the Amazon biome and the ecosystem services it provides, including greenhouse gas mitigation. Forest-to-pasture conversion has been shown to alter the flux of methane gas (CH4 ) in Amazonian soils, driving a switch from acting as a sink to a source of atmospheric CH4 . This study aimed to better understand this phenomenon by investigating soil microbial metagenomes, focusing on the taxonomic and functional structure of methane-cycling communities. Metagenomic data from forest and pasture soils were combined with measurements of in situ CH4 fluxes and soil edaphic factors and analysed using multivariate statistical approaches. We found a significantly higher abundance and diversity of methanogens in pasture soils. As inferred by co-occurrence networks, these microorganisms seem to be less interconnected within the soil microbiota in pasture soils. Metabolic traits were also different between land uses, with increased hydrogenotrophic and methylotrophic pathways of methanogenesis in pasture soils. Land-use change also induced shifts in taxonomic and functional traits of methanotrophs, with bacteria harbouring genes encoding the soluble form of methane monooxygenase enzyme (sMMO) depleted in pasture soils. Redundancy analysis and multimodel inference revealed that the shift in methane-cycling communities was associated with high pH, organic matter, soil porosity and micronutrients in pasture soils. These results comprehensively characterize the effect of forest-to-pasture conversion on the microbial communities driving the methane-cycling microorganisms in the Amazon rainforest, which will contribute to the efforts to preserve this important biome.


Asunto(s)
Microbiota , Suelo , Suelo/química , Metano/metabolismo , Bosques , Genes Bacterianos , Microbiota/genética , Microbiología del Suelo
3.
Microbiol Resour Announc ; 11(8): e0043222, 2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-35852316

RESUMEN

Here, we report the metagenomes from two Amazonian floodplain sediments in eastern Brazil. Tropical wetlands are well known for their role in the global carbon cycle. Microbial information on this diversified and dynamic landscape will provide further insights into its significance in regional and global biogeochemical cycles.

4.
Environ Microbiol ; 23(7): 4054-4073, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34245102

RESUMEN

Active volcanoes in Antarctica have remarkable temperature and geochemical gradients that could select for a wide variety of microbial adaptive mechanisms and metabolic pathways. Deception Island is a stratovolcano flooded by the sea, resulting in contrasting ecosystems such as permanent glaciers and active fumaroles, which creates steep gradients that have been shown to affect microbial diversity. In this study, we used shotgun metagenomics and metagenome-assembled genomes to explore the metabolic potentials and survival strategies of microbial communities along an extreme temperature gradient in fumarole and glacier sediments on Deception Island. We observed that communities from a 98 °C fumarole were significantly enriched in genes related to hyperthermophilic (e.g. reverse gyrase, GroEL/GroES and thermosome) and oxidative stress responses, as well as genes related to sulfate reduction, ammonification and carbon fixation. Communities from <80 °C fumaroles possessed more genes related osmotic, cold- and heat-shock responses, and diverse metabolic potentials, such as those related to sulfur oxidation and denitrification, while glacier communities showed abundant metabolic potentials mainly related to heterotrophy. Through the reconstruction of genomes, we were able to reveal the metabolic potentials and different survival strategies of underrepresented taxonomic groups, especially those related to Nanoarchaeota, Pyrodictiaceae and thermophilic ammonia-oxidizing archaeal lineages.


Asunto(s)
Bacterias , Microbiota , Regiones Antárticas , Archaea/genética , Bacterias/genética , Microbiota/genética , Temperatura
5.
Mol Ecol ; 30(11): 2560-2572, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33817881

RESUMEN

The Amazonian floodplain forests are dynamic ecosystems of great importance for the regional hydrological and biogeochemical cycles and function as a significant CH4 source contributing to the global carbon balance. Unique geochemical factors may drive the microbial community composition and, consequently, affect CH4 emissions across floodplain areas. Here, we report the in situ composition of CH4 cycling microbial communities in Amazonian floodplain sediments. We considered how abiotic factors may affect the microbial community composition and, more specifically, CH4 cycling groups. We collected sediment samples during wet and dry seasons from three different types of floodplain forests, along with upland forest soil samples, from the Eastern Amazon, Brazil. We used high-resolution sequencing of archaeal and bacterial 16S rRNA genes combined with real-time PCR to quantify Archaea and Bacteria, as well as key functional genes indicative of the presence of methanogenic (mcrA) and methanotrophic (pmoA) microorganisms. Methanogens were found to be present in high abundance in floodplain sediments, and they seem to resist the dramatic environmental changes between flooded and nonflooded conditions. Methanotrophs known to use different pathways to oxidise CH4 were detected, including anaerobic archaeal and bacterial taxa, indicating that a wide metabolic diversity may be harboured in this highly variable environment. The floodplain environmental variability, which is affected by the river origin, drives not only the sediment chemistry but also the composition of the microbial communities. These environmental changes seem also to affect the pools of methanotrophs occupying distinct niches. Understanding these shifts in the methanotrophic communities could improve our comprehension of the CH4 emissions in the region.


Asunto(s)
Euryarchaeota , Metano , Archaea/genética , Brasil , ARN Ribosómico 16S/genética , Microbiología del Suelo
6.
ISME J ; 15(3): 658-672, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33082572

RESUMEN

The Amazon rainforest is a biodiversity hotspot and large terrestrial carbon sink threatened by agricultural conversion. Rainforest-to-pasture conversion stimulates the release of methane, a potent greenhouse gas. The biotic methane cycle is driven by microorganisms; therefore, this study focused on active methane-cycling microorganisms and their functions across land-use types. We collected intact soil cores from three land use types (primary rainforest, pasture, and secondary rainforest) of two geographically distinct areas of the Brazilian Amazon (Santarém, Pará and Ariquemes, Rondônia) and performed DNA stable-isotope probing coupled with metagenomics to identify the active methanotrophs and methanogens. At both locations, we observed a significant change in the composition of the isotope-labeled methane-cycling microbial community across land use types, specifically an increase in the abundance and diversity of active methanogens in pastures. We conclude that a significant increase in the abundance and activity of methanogens in pasture soils could drive increased soil methane emissions. Furthermore, we found that secondary rainforests had decreased methanogenic activity similar to primary rainforests, and thus a potential to recover as methane sinks, making it conceivable for forest restoration to offset greenhouse gas emissions in the tropics. These findings are critical for informing land management practices and global tropical rainforest conservation.


Asunto(s)
Bosque Lluvioso , Suelo , Brasil , Metano , Microbiología del Suelo
7.
Environ Int ; 145: 106131, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32979812

RESUMEN

Amazonian rainforest is undergoing increasing rates of deforestation, driven primarily by cattle pasture expansion. Forest-to-pasture conversion has been associated with increases in soil methane (CH4) emission. To better understand the drivers of this change, we measured soil CH4 flux, environmental conditions, and belowground microbial community structure across primary forests, cattle pastures, and secondary forests in two Amazonian regions. We show that pasture soils emit high levels of CH4 (mean: 3454.6 ± 9482.3 µg CH4 m-2 d-1), consistent with previous reports, while forest soils on average emit CH4 at modest rates (mean: 9.8 ± 120.5 µg CH4 m-2 d-1), but often act as CH4 sinks. We report that secondary forest soils tend to consume CH4 (mean: -10.2 ± 35.7 µg CH4 m-2 d-1), demonstrating that pasture CH4 emissions can be reversed. We apply a novel computational approach to identify microbial community attributes associated with flux independent of soil chemistry. While this revealed taxa known to produce or consume CH4 directly (i.e. methanogens and methanotrophs, respectively), the vast majority of identified taxa are not known to cycle CH4. Each land use type had a unique subset of taxa associated with CH4 flux, suggesting that land use change alters CH4 cycling through shifts in microbial community composition. Taken together, we show that microbial composition is crucial for understanding the observed CH4 dynamics and that microorganisms provide explanatory power that cannot be captured by environmental variables.


Asunto(s)
Metano , Suelo , Animales , Brasil , Bovinos , Bosques , Microbiología del Suelo
8.
Appl Environ Microbiol ; 86(10)2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32169937

RESUMEN

Biological nitrogen fixation can be an important source of nitrogen in tropical forests that serve as a major CO2 sink. Extensive deforestation of the Amazon is known to influence microbial communities and the biogeochemical cycles they mediate. However, it is unknown how diazotrophs (nitrogen-fixing microorganisms) respond to deforestation and subsequent ecosystem conversion to agriculture, as well as whether they can recover in secondary forests that are established after agriculture is abandoned. To address these knowledge gaps, we combined a spatially explicit sampling approach with high-throughput sequencing of nifH genes. The main objectives were to assess the functional distance decay relationship of the diazotrophic bacterial community in a tropical forest ecosystem and to quantify the roles of various factors that drive the observed changes in the diazotrophic community structure. We observed an increase in local diazotrophic diversity (α-diversity) with a decrease in community turnover (ß-diversity), associated with a shift in diazotrophic community structure as a result of the forest-to-pasture conversion. Both diazotrophic community turnover and structure showed signs of recovery in secondary forests. Changes in the diazotrophic community were primarily driven by the change in land use rather than differences in geochemical characteristics or geographic distances. The diazotroph communities in secondary forests resembled those in primary forests, suggesting that at least partial recovery of diazotrophs is possible following agricultural abandonment.IMPORTANCE The Amazon region is a major tropical forest region that is being deforested at an alarming rate to create space for cattle ranching and agriculture. Diazotrophs (nitrogen-fixing microorganisms) play an important role in supplying soil N for plant growth in tropical forests. It is unknown how diazotrophs respond to deforestation and whether they can recover in secondary forests that establish after agriculture is abandoned. Using high-throughput sequencing of nifH genes, we characterized the response of diazotrophs' ß-diversity and identified major drivers of changes in diazotrophs from forest-to-pasture and pasture-to-secondary-forest conversions. Studying the impact of land use change on diazotrophs is important for a better understanding of the impact of deforestation on tropical forest ecosystem functioning, and our results on the potential recovery of diazotrophs in secondary forests imply the possible restoration of ecosystem functions in secondary forests.


Asunto(s)
Bacterias/metabolismo , Conservación de los Recursos Naturales , Bosque Lluvioso , Microbiología del Suelo , Bacterias/clasificación , Brasil , Microbiota , Fijación del Nitrógeno , Suelo/química
9.
Appl Environ Microbiol ; 84(17)2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29959251

RESUMEN

Several studies have shown that rainfall seasonality, soil heterogeneity, and increased nitrogen (N) deposition may have important effects on tropical forest function. However, the effects of these environmental controls on soil microbial communities in seasonally dry tropical forests are poorly understood. In a seasonally dry tropical forest in the Yucatan Peninsula (Mexico), we investigated the influence of soil heterogeneity (which results in two different soil types, black and red soils), rainfall seasonality (in two successive seasons, wet and dry), and 3 years of repeated N enrichment on soil chemical and microbiological properties, including bacterial gene content and community structure. The soil properties varied with the soil type and the sampling season but did not respond to N enrichment. Greater organic matter content in the black soils was associated with higher microbial biomass, enzyme activities, and abundances of genes related to nitrification (amoA) and denitrification (nirK and nirS) than were observed in the red soils. Rainfall seasonality was also associated with changes in soil microbial biomass and activity levels and N gene abundances. Actinobacteria, Proteobacteria, Firmicutes, and Acidobacteria were the most abundant phyla. Differences in bacterial community composition were associated with soil type and season and were primarily detected at higher taxonomic resolution, where specific taxa drive the separation of communities between soils. We observed that soil heterogeneity and rainfall seasonality were the main correlates of soil bacterial community structure and function in this tropical forest, likely acting through their effects on soil attributes, especially those related to soil organic matter and moisture content.IMPORTANCE Understanding the response of soil microbial communities to environmental factors is important for predicting the contribution of forest ecosystems to global environmental change. Seasonally dry tropical forests are characterized by receiving less than 1,800 mm of rain per year in alternating wet and dry seasons and by high heterogeneity in plant diversity and soil chemistry. For these reasons, N deposition may affect their soils differently than those in humid tropical forests. This study documents the influence of rainfall seasonality, soil heterogeneity, and N deposition on soil chemical and microbiological properties in a seasonally dry tropical forest. Our findings suggest that soil heterogeneity and rainfall seasonality are likely the main factors controlling soil bacterial community structure and function in this tropical forest. Nitrogen enrichment was likely too low to induce significant short-term effects on soil properties, because this tropical forest is not N limited.


Asunto(s)
Bacterias/genética , Bacterias/metabolismo , Nitrógeno/análisis , Microbiología del Suelo , Suelo/química , Acidobacteria/clasificación , Acidobacteria/genética , Acidobacteria/aislamiento & purificación , Actinobacteria/clasificación , Actinobacteria/genética , Actinobacteria/aislamiento & purificación , Bacterias/clasificación , Desnitrificación/genética , Firmicutes/clasificación , Firmicutes/genética , Firmicutes/aislamiento & purificación , Bosques , México , Microbiota/genética , Nitrificación/genética , Proteobacteria/clasificación , Proteobacteria/genética , Proteobacteria/aislamiento & purificación , Lluvia , Estaciones del Año , Árboles/microbiología , Clima Tropical
10.
Front Microbiol ; 9: 899, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29867810

RESUMEN

Active volcanoes in Antarctica contrast with their predominantly cold surroundings, resulting in environmental conditions capable of selecting for versatile and extremely diverse microbial communities. This is especially true on Deception Island, where geothermal, marine, and polar environments combine to create an extraordinary range of environmental conditions. Our main goal in this study was to understand how microbial community structure is shaped by gradients of temperature, salinity, and geochemistry in polar marine volcanoes. Thereby, we collected surface sediment samples associated with fumaroles and glaciers at two sites on Deception, with temperatures ranging from 0 to 98°C. Sequencing of the 16S rRNA gene was performed to assess the composition and diversity of Bacteria and Archaea. Our results revealed that Deception harbors a combination of taxonomic groups commonly found both in cold and geothermal environments of continental Antarctica, and also groups normally identified at deep and shallow-sea hydrothermal vents, such as hyperthermophilic archaea. We observed a clear separation in microbial community structure across environmental gradients, suggesting that microbial community structure is strongly niche driven on Deception. Bacterial community structure was significantly associated with temperature, pH, salinity, and chemical composition; in contrast, archaeal community structure was strongly associated only with temperature. Our work suggests that Deception represents a peculiar "open-air" laboratory to elucidate central questions regarding molecular adaptability, microbial evolution, and biogeography of extremophiles in polar regions.

12.
Front Microbiol ; 7: 1045, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27468277

RESUMEN

Soil microorganisms play important roles in nitrogen cycling within forest ecosystems. Current research has revealed that a wider variety of microorganisms, with unexpected diversity in their functions and phylogenies, are involved in the nitrogen cycle than previously thought, including nitrogen-fixing bacteria, ammonia-oxidizing bacteria and archaea, heterotrophic nitrifying microorganisms, and anammox bacteria, as well as denitrifying bacteria, archaea, and fungi. However, the vast majority of this research has been focused in temperate regions, and relatively little is known regarding the ecology of nitrogen-cycling microorganisms within tropical and subtropical ecosystems. Tropical forests are characterized by relatively high precipitation, low annual temperature fluctuation, high heterogeneity in plant diversity, large amounts of plant litter, and unique soil chemistry. For these reasons, regulation of the nitrogen cycle in tropical forests may be very different from that of temperate ecosystems. This is of great importance because of growing concerns regarding the effect of land use change and chronic-elevated nitrogen deposition on nitrogen-cycling processes in tropical forests. In the context of global change, it is crucial to understand how environmental factors and land use changes in tropical ecosystems influence the composition, abundance and activity of key players in the nitrogen cycle. In this review, we synthesize the limited currently available information regarding the microbial communities involved in nitrogen fixation, nitrification and denitrification, to provide deeper insight into the mechanisms regulating nitrogen cycling in tropical forest ecosystems. We also highlight the large gaps in our understanding of microbially mediated nitrogen processes in tropical forest soils and identify important areas for future research.

13.
Front Microbiol ; 6: 1443, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26733981

RESUMEN

Members of the phylum Acidobacteria are among the most abundant soil bacteria on Earth, but little is known about their response to environmental changes. We asked how the relative abundance and biogeographic patterning of this phylum and its subgroups responded to forest-to-pasture conversion in soils of the western Brazilian Amazon. Pyrosequencing of 16S rRNA genes was employed to assess the abundance and composition of the Acidobacteria community across 54 soil samples taken using a spatially nested sampling scheme at the landscape level. Numerically, Acidobacteria represented 20% of the total bacterial community in forest soils and 11% in pasture soils. Overall, 15 different Acidobacteria subgroups of the current 26 subgroups were detected, with Acidobacteria subgroups 1, 3, 5, and 6 accounting together for 87% of the total Acidobacteria community in forest soils and 75% in pasture soils. Concomitant with changes in soil chemistry after forest-to-pasture conversion-particularly an increase in properties linked to soil acidity and nutrient availability-we observed an increase in the relative abundances of Acidobacteria subgroups 4, 10, 17, and 18, and a decrease in the relative abundances of other Acidobacteria subgroups in pasture relative to forest soils. The composition of the total Acidobacteria community as well as the most abundant Acidobacteria subgroups (1, 3, 5, and 6) was significantly more similar in composition across space in pasture soils than in forest soils. These results suggest that preponderant responses of Acidobacteria subgroups, especially subgroups 1, 3, 4, 5, and 6, to forest-to-pasture conversion effects in soils could be used to define management-indicators of agricultural practices in the Amazon Basin. These acidobacterial responses are at least in part through alterations on acidity- and nutrient-related properties of the Amazon soils.

14.
ISME J ; 8(7): 1548-50, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24451208

RESUMEN

Understanding the interactions among microbial communities, plant communities and soil properties following deforestation could provide insights into the long-term effects of land-use change on ecosystem functions, and may help identify approaches that promote the recovery of degraded sites. We combined high-throughput sequencing of fungal rDNA and molecular barcoding of plant roots to estimate fungal and plant community composition in soil sampled across a chronosequence of deforestation. We found significant effects of land-use change on fungal community composition, which was more closely correlated to plant community composition than to changes in soil properties or geographic distance, providing evidence for strong links between above- and below-ground communities in tropical forests.


Asunto(s)
Conservación de los Recursos Naturales , ADN de Hongos/genética , ADN Ribosómico/genética , Hongos/genética , Raíces de Plantas/microbiología , Microbiología del Suelo , Brasil , Código de Barras del ADN Taxonómico , Ecosistema , Hongos/clasificación , Filogenia , Raíces de Plantas/clasificación , Raíces de Plantas/genética , Árboles/clasificación , Árboles/genética , Árboles/microbiología , Clima Tropical
15.
Appl Environ Microbiol ; 80(1): 281-8, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24162570

RESUMEN

The Amazon rainforest, the largest equatorial forest in the world, is being cleared for pasture and agricultural use at alarming rates. Tropical deforestation is known to cause alterations in microbial communities at taxonomic and phylogenetic levels, but it is unclear whether microbial functional groups are altered. We asked whether free-living nitrogen-fixing microorganisms (diazotrophs) respond to deforestation in the Amazon rainforest, using analysis of the marker gene nifH. Clone libraries were generated from soil samples collected from a primary forest, a 5-year-old pasture originally converted from primary forest, and a secondary forest established after pasture abandonment. Although diazotroph richness did not significantly change among the three plots, diazotroph community composition was altered with forest-to-pasture conversion, and phylogenetic similarity was higher among pasture communities than among those in forests. There was also 10-fold increase in nifH gene abundance following conversion from primary forest to pasture. Three environmental factors were associated with the observed changes: soil acidity, total N concentration, and C/N ratio. Our results suggest a partial restoration to initial levels of abundance and community structure of diazotrophs following pasture abandonment, with primary and secondary forests sharing similar communities. We postulate that the response of diazotrophs to land use change is a direct consequence of changes in plant communities, particularly the higher N demand of pasture plant communities for supporting aboveground plant growth.


Asunto(s)
Bacterias/clasificación , Bacterias/aislamiento & purificación , Biota , Actividades Humanas , Fijación del Nitrógeno , Microbiología del Suelo , Agricultura/métodos , Bacterias/metabolismo , Carbono/análisis , Análisis por Conglomerados , Conservación de los Recursos Naturales , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Nitrógeno/análisis , Oxidorreductasas/genética , Filogenia , Análisis de Secuencia de ADN , Suelo/química , América del Sur , Árboles
16.
Proc Natl Acad Sci U S A ; 110(3): 988-93, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23271810

RESUMEN

The Amazon rainforest is the Earth's largest reservoir of plant and animal diversity, and it has been subjected to especially high rates of land use change, primarily to cattle pasture. This conversion has had a strongly negative effect on biological diversity, reducing the number of plant and animal species and homogenizing communities. We report here that microbial biodiversity also responds strongly to conversion of the Amazon rainforest, but in a manner different from plants and animals. Local taxonomic and phylogenetic diversity of soil bacteria increases after conversion, but communities become more similar across space. This homogenization is driven by the loss of forest soil bacteria with restricted ranges (endemics) and results in a net loss of diversity. This study shows homogenization of microbial communities in response to human activities. Given that soil microbes represent the majority of biodiversity in terrestrial ecosystems and are intimately involved in ecosystem functions, we argue that microbial biodiversity loss should be taken into account when assessing the impact of land use change in tropical forests.


Asunto(s)
Agricultura , Bacterias/aislamiento & purificación , Biodiversidad , Microbiología del Suelo , Clima Tropical , Animales , Bacterias/clasificación , Bacterias/genética , Brasil , Bovinos , Ecosistema , Humanos , Filogenia , Lluvia , Árboles
17.
Ecol Lett ; 14(2): 141-9, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21166972

RESUMEN

Ecologists and conservation biologists have historically used species-area and distance-decay relationships as tools to predict the spatial distribution of biodiversity and the impact of habitat loss on biodiversity. These tools treat each species as evolutionarily equivalent, yet the importance of species' evolutionary history in their ecology and conservation is becoming increasingly evident. Here, we provide theoretical predictions for phylogenetic analogues of the species-area and distance-decay relationships. We use a random model of community assembly and a spatially explicit flora dataset collected in four Mediterranean-type regions to provide theoretical predictions for the increase in phylogenetic diversity - the total phylogenetic branch-length separating a set of species - with increasing area and the decay in phylogenetic similarity with geographic separation. These developments may ultimately provide insights into the evolution and assembly of biological communities, and guide the selection of protected areas.


Asunto(s)
Biota , Magnoliopsida/clasificación , Australia , California , Chile , Conservación de los Recursos Naturales , Ecología , Modelos Biológicos , Filogenia , Dinámica Poblacional , Sudáfrica , Árboles/clasificación
18.
Ecology ; 87(7 Suppl): S100-8, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16922306

RESUMEN

Very little is known about the structure of microbial communities, despite their abundance and importance to ecosystem processes. Recent work suggests that bacterial biodiversity might exhibit patterns similar to those of plants and animals. However, relative to our knowledge about the diversity of macro-organisms, we know little about patterns of relatedness in free-living bacterial communities, and relatively few studies have quantitatively examined community structure in a phylogenetic framework. Here we apply phylogenetic tools to bacterial diversity data to determine whether bacterial communities are phylogenetically structured. We find that bacterial communities tend to contain lower taxonomic diversity and are more likely to be phylogenetically clustered than expected by chance. Such phylogenetic clustering may indicate the importance of habitat filtering (where a group of closely related species shares a trait, or suite of traits, that allow them to persist in a given habitat) in the assembly of bacterial communities. Microbial communities are especially accessible for phylogenetic analysis and thus have the potential to figure prominently in the integration of evolutionary biology and community ecology.


Asunto(s)
Bacterias/clasificación , Biodiversidad , Ecosistema , Fenómenos Fisiológicos Bacterianos , Secuencia de Bases , Evolución Biológica , Costa Rica , ADN Ribosómico/genética , ARN Ribosómico 16S/genética , Microbiología del Suelo , Estados Unidos , Microbiología del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA