Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biotechnol Bioeng ; 120(11): 3163-3176, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37489835

RESUMEN

Fc-fusion proteins are highly complex molecules, difficult to manufacture at scale. In this work, undesired proteoforms were detected during the manufacture of a therapeutic fusion protein produced in CHO cells. These species were characterized using gel electrophoresis, size exclusion chromatography and liquid chromatography-mass spectrometry leading to the identification of low molecular weight proteoforms presenting low N- and O-glycan site occupancy, as well as a low sialylation content. Upstream process parameters were investigated, and fusion protein quality was shown to be linked to the sodium chloride content of the medium. A mitigation strategy was developed to avoid formation of unwanted glyco-variants, resulting in an increased yield of highly glycosylated Fc-fusion protein. The effect of sodium chloride was shown to be independent of the osmolality increase and was hypothesized to be linked to a modulation of Golgi acidity, which is required for the correct localization and function of glycosyltransferases. Altogether, this study highlights the importance of the salt balance in cell culture media used to produce highly sialylated and occupied glycoproteins, helping to maximize the yield and increase robustness of processes aiming at producing biopharmaceutical complex therapeutic molecules.


Asunto(s)
Glicoproteínas , Cloruro de Sodio , Cricetinae , Animales , Glicosilación , Cricetulus , Glicoproteínas/metabolismo , Polisacáridos/química , Células CHO
2.
ACS Chem Biol ; 13(3): 548-552, 2018 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-29363941

RESUMEN

Reductive dehalogenases (RDases) are key enzymes involved in the respiratory process of anaerobic organohalide respiring bacteria (ORB). Heterologous expression of respiratory RDases is desirable for structural and functional studies; however, there are few reports of successful expression of these enzymes. Dehalobacter sp. strain UNSWDHB is an ORB, whose preferred electron acceptor is chloroform. This study describes efforts to express recombinant reductive dehalogenase (TmrA), derived from UNSW DHB, using the heterologous hosts Escherichia coli and Bacillus megaterium. Here, we report the recombinant expression of soluble and functional TmrA, using B. megaterium as an expression host under a xylose-inducible promoter. Successful incorporation of iron-sulfur clusters and a corrinoid cofactor was demonstrated using UV-vis spectroscopic analyses. In vitro dehalogenation of chloroform using purified recombinant TmrA was demonstrated. This is the first known report of heterologous expression and purification of a respiratory reductive dehalogenase from an obligate organohalide respiring bacterium.


Asunto(s)
Bacillus megaterium/genética , Cloroformo/química , Oxidorreductasas/genética , Halogenación , Proteínas Recombinantes/genética
3.
MAbs ; 9(6): 889-897, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28581887

RESUMEN

The quality of recombinant proteins such as monoclonal antibodies produced using Chinese hamster ovary cell-based mammalian systems is dependent on many factors, including cell line, process and cell culture media. Due to these factors, the generated product is heterogeneous and may have chemically-induced modifications or post-translational modifications that affect antibody stability, functionality and, in some cases, patient safety. This study demonstrates that S-sulfocysteine, a cysteine derivative, can increase the antibody specific productivity in different cell lines cultivated with different processes while minimizing trisulfide linkages in generated mAbs, mainly between heavy and light chain. The supplementation of a cell culture feed with S-sulfocysteine also proved to be useful to reduce the percentage of antibody fragments generated from the monoclonal antibody. Overall, this new component used in the upstream process allows a reduction of product heterogeneity.

4.
Microb Biotechnol ; 10(6): 1640-1648, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28631300

RESUMEN

We report herein the purification of a chloroform (CF)-reducing enzyme, TmrA, from the membrane fraction of a strict anaerobe Dehalobacter sp. strain UNSWDHB to apparent homogeneity with an approximate 23-fold increase in relative purity compared to crude lysate. The membrane fraction obtained by ultracentrifugation was solubilized in Triton X-100 in the presence of glycerol, followed by purification by anion exchange chromatography. The molecular mass of the purified TmrA was determined to be 44.5 kDa by SDS-PAGE and MALDI-TOF/TOF. The purified dehalogenase reductively dechlorinated CF to dichloromethane in vitro with reduced methyl viologen as the electron donor at a specific activity of (1.27 ± 0.04) × 103 units mg protein-1 . The optimum temperature and pH for the activity were 45°C and 7.2, respectively. The UV-visible spectrometric analysis indicated the presence of a corrinoid and two [4Fe-4S] clusters, predicted from the amino acid sequence. This is the first report of the production, purification and biochemical characterization of a CF reductive dehalogenase.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Cloroformo/metabolismo , Clostridiales/enzimología , Oxidorreductasas/química , Oxidorreductasas/aislamiento & purificación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cromatografía por Intercambio Iónico , Clostridiales/química , Clostridiales/genética , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Cinética , Peso Molecular , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Especificidad por Sustrato
5.
Front Microbiol ; 7: 249, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26973626

RESUMEN

Organohalides are recalcitrant pollutants that have been responsible for substantial contamination of soils and groundwater. Organohalide-respiring bacteria (ORB) provide a potential solution to remediate contaminated sites, through their ability to use organohalides as terminal electron acceptors to yield energy for growth (i.e., organohalide respiration). Ideally, this process results in non- or lesser-halogenated compounds that are mostly less toxic to the environment or more easily degraded. At the heart of these processes are reductive dehalogenases (RDases), which are membrane bound enzymes coupled with other components that facilitate dehalogenation of organohalides to generate cellular energy. This review focuses on RDases, concentrating on those which have been purified (partially or wholly) and functionally characterized. Further, the paper reviews the major bacteria involved in organohalide breakdown and the evidence for microbial evolution of RDases. Finally, the capacity for using ORB in a bioremediation and bioaugmentation capacity are discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA