Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anal Chem ; 95(49): 18130-18138, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-38015205

RESUMEN

Real-time monitoring of biopharmaceutical reactors is becoming increasingly important as the processes become more complex. During the continuous manufacturing of monoclonal antibodies (mAbs), the desired mAb product is continually created and collected over a 30 day process, where there can be changes in quality over that time. Liquid chromatography (LC) is the workhorse instrumentation capable of measuring mAb concentration as well as quality attributes such as aggregation, charge variants, oxidation, etc. However, traditional offline sampling is too infrequent to fully characterize bioprocesses, and the typical time from sample generation to data analysis and reporting can take weeks. To circumvent these limitations, an automated online sampling multidimensional workflow was developed to enable streamlined measurements of mAb concentration, aggregation, and charge variants. This analytical framework also facilitates automated data export for real-time analysis of up to six bioreactors, including feedback-controlling capability using readily available LC technology. This workflow increases the data points per bioreactor, improving the understanding of each experiment while also reducing the data turnaround time from weeks to hours. Examples of effective real-time analyses of mAb critical quality attributes are illustrated, showing substantial throughput improvements and accurate results while minimizing labor and manual intervention.


Asunto(s)
Productos Biológicos , Reactores Biológicos , Retroalimentación , Anticuerpos Monoclonales/química , Cromatografía Liquida
2.
J Proteome Res ; 18(7): 2875-2884, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-31188604

RESUMEN

Alterations in gut bacterial homeostasis result in changes in intestinal metabolites. To investigate the effects of alcohol on fecal metabolites and the role of cathelicidin-related antimicrobial peptide (CRAMP) in alcoholic liver disease (ALD), CRAMP knockout (KO) and their control wild type (WT) mice were fed a Lieber-DeCarli liquid diet with or without alcohol. Polar metabolites in mouse feces were analyzed by GC × GC-MS and 2DLC-MS, and the concentrations of short chain fatty acids (SCFAs) were measured by GC-MS. A total of 95 and 190 metabolites were detected by GC × GC-MS and 2DLC-MS, respectively. Among the significantly changed metabolites, taurine and nicotinic acid were decreased in WT mice fed alcohol, which were also down-regulated in KO mice fed without alcohol. Interestingly, these two metabolites were increased in KO mice fed alcohol compared to them in WT controls. Additionally, SCFAs were significantly decreased in WT mice fed alcohol and in KO mice fed without alcohol, whereas two branched-chain SCFAs were increased by alcohol treatment in KO mice. In summary, the analytical platforms employed in this study successfully dissected the alterations of polar metabolites and SCFAs in fecal samples, which helped understand the effects of alcohol consumption and CRAMP in intestinal metabolism and alcohol-induced liver injury.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Etanol/farmacología , Heces/química , Hepatopatías Alcohólicas/etiología , Animales , Péptidos Catiónicos Antimicrobianos/deficiencia , Péptidos Catiónicos Antimicrobianos/genética , Etanol/administración & dosificación , Ácidos Grasos Volátiles/análisis , Cromatografía de Gases y Espectrometría de Masas , Ratones , Ratones Noqueados , Catelicidinas
3.
Analyst ; 144(14): 4331-4341, 2019 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-31192319

RESUMEN

The diverse characteristics and large number of entities make metabolite separation challenging in metabolomics. To date, there is not a singular instrument capable of analyzing all types of metabolites. In order to achieve a better separation for higher peak capacity and accurate metabolite identification and quantification, we integrated GC × GC-MS and parallel 2DLC-MS for analysis of polar metabolites. To test the performance of the developed system, 13 rats were fed different diets to form two animal groups. Polar metabolites extracted from rat livers were analyzed by GC × GC-MS, parallel 2DLC-MS (-) and parallel 2DLC-MS (+), respectively. By integrating all data together, 58 metabolites were detected with significant change in their abundance levels between groups (p≤ 0.05). Of the 58 metabolites, three metabolites were detected in two platforms and two in all three platforms. Manual examination showed that discrepancy of metabolite regulation measured by different platforms was mainly caused by the poor shape of chromatographic peaks resulting from low instrument response. Pathway analysis demonstrated that integrating the results from multiple platforms increased the confidence of metabolic pathway assignment.


Asunto(s)
Metaboloma , Metabolómica/métodos , Animales , Cromatografía Liquida/métodos , Dieta , Cromatografía de Gases y Espectrometría de Masas/métodos , Hígado/química , Masculino , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...