Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Toxicol Environ Health A ; 87(5): 199-214, 2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38073506

RESUMEN

Several medicinal plants have been administered to cancer patients attributed to their anticarcinogenic and chemoprotective properties, in addition to lower toxicity compared to traditional therapies. The aim was to investigate the antioxidant properties and carotenoid composition of aqueous extracts of Mentha piperita or Artemisia vulgaris which were previously found to exert beneficial effects on human health through diet. aqueous extracts exhibited potent antioxidant activity. A diversity of carotenoids was identified in these extracts using HPLC-PDA-MS/MS. Both extracts contained predominantly all-trans-lutein as the main component within this class. In order to investigate antioxidant properties, the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) techniques were used. The (3-4,5 dimethylthiazol-2, 5 diphenyl tetrazolium bromide) (MTT) and Crystal Violet assays assessed cellular cytotoxicity. Assessments of presence of reactive species were carried out following exposure of oral squamous cell carcinoma cell line (SCC-4) to various aqueous extracts of M piperita or A vulgaris utilizing dichlorofluorescein diacetate (DCFH-DA) and nitric oxide (NO) assays. Exposure to these extracts induced severe cytotoxic effects, which led to investigation of the biochemical and molecular mechanisms underlying this observed effect. Data demonstrated that both solutions induced oxidative stress and DNA damage, especially at higher concentrations using agarose gel subjected to electrophoresis. It is known that exposure to excess amounts of antioxidants results in a prooxidant effect which is beneficial in cancer therapy. Further, the extracts were found to reduce viability of SCC-4 in culture, indicating that this antitumoral activity may be of therapeutic importance and requires further study.


Asunto(s)
Artemisia , Carcinoma de Células Escamosas , Neoplasias de la Boca , Humanos , Antioxidantes/farmacología , Antioxidantes/química , Mentha piperita/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Espectrometría de Masas en Tándem , División del ADN , Fitoquímicos , Carotenoides/farmacología
2.
J Toxicol Environ Health A ; 87(2): 47-56, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-37882219

RESUMEN

Among biotic and abiotic stresses, the most restrictive for plant distribution is salt stress, where different concentrations might exert harmful effects on seed germination. Recently, nanomaterials were used successfully to mitigate these stresses, indicating that plants may be able to develop normally in adverse conditions. The aim of this study was to examine the effects of graphene oxide (GO) on the germination of Persian clover seedlings under salt stress conditions. Following sown on substrate paper, seeds were tested after exposure to different concentrations of graphene oxide (0, 125, 250, or 500 mg L-1 GO), sodium chloride (0; -0.1; -0.2; -0.3, or -0.4 MPa NaCl) and/or GO + salt concomitantly, and then stored for 7 days in a germination chamber at 20°C in the presence of light. Seed germination and growth parameters of seedlings were determined. Graphene oxide demonstrated protective effect against salt stress as evident by no marked adverse effects on seed germination where GO blocked the salt-induced reduction in germination. The results obtained provide references for the safe application of nanomaterials and emphasize the significance of GO as a promising material for reducing the toxicity of salts in agriculture.


Asunto(s)
Germinación , Semillas , Estrés Salino , Plantones
3.
J Toxicol Environ Health A ; 86(21): 816-832, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37667472

RESUMEN

The particular plant species found in southern Brazil, Vassobia breviflora (Solanaceae) has only a few apparent studies examining its biological effect. Thus, the aim of the present study was to determine the activity of the acetone extract fraction derived from V. breviflora. Four compounds were identified by ESI-qTOF-MS: eucalrobusone R, aplanoic acid B, pheophorbide A, and pheophytin A. In addition, 5 compounds were identified by HPLC-PDA-MS/MS: all-trans-lutein, 15-cis-lutein, all-trans-ß-carotene, 5,8-epoxy-ß-carotene, and cis-ß-carotene. Cell lines A549 (lung cancer), A375 (melanoma cancer) and HeLa (cervical cancer) were incubated with different concentrations of each studied extract using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), lactate dehydrogenase (LDH), and 2'-7'dichlorofluorescin diacetate (DCFH-DA) assays. The acetonic extract exhibited cytotoxic activity at a concentration of 0.03 mg/ml in the HeLa strain and 0.1 mg/ml in the others. In addition to increased production of reactive oxygen species (ROS). Antibacterial activity was assessed utilizing minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) in 9 ATCCs strains and 7 clinical isolates, as well as determination of biofilm production. Data demonstrated that MIC and MBC were approximately 256 mg/ml in most of the strains tested and antibiofilm effect at S. aureus, S. epidermidis, A. baumannii, and E. faecalis, concentrations below the MIC. Genotoxic activity on plasmid DNA did not produce significant elevated levels in breaks in the isolated genetic material.


Asunto(s)
Acetona , Luteína , Staphylococcus aureus , Espectrometría de Masas en Tándem , beta Caroteno , Brasil
4.
Polymers (Basel) ; 14(22)2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36432981

RESUMEN

Herein, tetracycline adsorption employing magnetic chitosan (CS·Fe3O4) as the adsorbent is reported. The magnetic adsorbent was synthesized by the co-precipitation method and characterized through FTIR, XRD, SEM, and VSM analyses. The experimental data showed that the highest maximum adsorption capacity was reached at pH 7.0 (211.21 mg g-1). The efficiency of the magnetic adsorbent in tetracycline removal was dependent on the pH, initial concentration of adsorbate, and the adsorbent dosage. Additionally, the ionic strength showed a significant effect on the process. The equilibrium and kinetics studies demonstrate that Sips and Elovich models showed the best adjustment for experimental data, suggesting that the adsorption occurs in a heterogeneous surface and predominantly by chemical mechanisms. The experimental results suggest that tetracycline adsorption is mainly governed by the hydrogen bonds and cation-π interactions due to its pH dependence as well as the enhancement in the removal efficiency with the magnetite incorporation on the chitosan surface, respectively. Thermodynamic parameters indicate a spontaneous and exothermic process. Finally, magnetic chitosan proves to be efficient in TC removal even after several adsorption/desorption cycles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...