Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Annu Rev Biochem ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598854

RESUMEN

Methylation of RNA nucleotides represents an important layer of gene expression regulation, and perturbation of the RNA methylome is associated with pathophysiology. In cells, RNA methylations are installed by RNA methyltransferases (RNMTs) that are specialized to catalyze particular types of methylation (ribose or different base positions). Furthermore, RNMTs must specifically recognize their appropriate target RNAs within the RNA-dense cellular environment. Some RNMTs are catalytically active alone and achieve target specificity via recognition of sequence motifs and/or RNA structures. Others function together with protein cofactors that can influence stability, S-adenosyl-L-methionine binding, and RNA affinity as well as aiding specific recruitment and catalytic activity. Association of RNMTs with guide RNAs represents an alternative mechanism to direct site-specific methylation by an RNMT that lacks intrinsic specificity. Recently, ribozyme-catalyzed methylation of RNA has been achieved in vitro, and here, we compare these different strategies for RNA methylation from structural and mechanistic perspectives.

2.
J Am Chem Soc ; 146(11): 7803-7810, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38445613

RESUMEN

N6-methyladenosine (m6A) is an important modified nucleoside in cellular RNA associated with multiple cellular processes and is implicated in diseases. The enzymes associated with the dynamic installation and removal of m6A are heavily investigated targets for drug research, which requires detailed knowledge of the recognition modes of m6A by proteins. Here, we use atomic mutagenesis of m6A to systematically investigate the mechanisms of the two human m6A demethylase enzymes FTO and ALKBH5 and the binding modes of YTH reader proteins YTHDF2/DC1/DC2. Atomic mutagenesis refers to atom-specific changes that are introduced by chemical synthesis, such as the replacement of nitrogen by carbon atoms. Synthetic RNA oligonucleotides containing site-specifically incorporated 1-deaza-, 3-deaza-, and 7-deaza-m6A nucleosides were prepared by solid-phase synthesis and their RNA binding and demethylation by recombinant proteins were evaluated. We found distinct differences in substrate recognition and transformation and revealed structural preferences for the enzymatic activity. The deaza m6A analogues introduced in this work will be useful probes for other proteins in m6A research.


Asunto(s)
Adenosina/análogos & derivados , ARN , Humanos , ARN/química , Mutagénesis , Proteínas Recombinantes , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo
3.
Nucleic Acids Res ; 52(4): 1953-1974, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38113271

RESUMEN

Regulation of RNA helicase activity, often accomplished by protein cofactors, is essential to ensure target specificity within the complex cellular environment. The largest family of RNA helicase cofactors are the G-patch proteins, but the cognate RNA helicases and cellular functions of numerous human G-patch proteins remain elusive. Here, we discover that GPATCH4 is a stimulatory cofactor of DHX15 that interacts with the DEAH box helicase in the nucleolus via residues in its G-patch domain. We reveal that GPATCH4 associates with pre-ribosomal particles, and crosslinks to the transcribed ribosomal DNA locus and precursor ribosomal RNAs as well as binding to small nucleolar- and small Cajal body-associated RNAs that guide rRNA and snRNA modifications. Loss of GPATCH4 impairs 2'-O-methylation at various rRNA and snRNA sites leading to decreased protein synthesis and cell growth. We demonstrate that the regulation of 2'-O-methylation by GPATCH4 is both dependent on, and independent of, its interaction with DHX15. Intriguingly, the ATPase activity of DHX15 is necessary for efficient methylation of DHX15-dependent sites, suggesting a function of DHX15 in regulating snoRNA-guided 2'-O-methylation of rRNA that requires activation by GPATCH4. Overall, our findings extend knowledge on RNA helicase regulation by G-patch proteins and also provide important new insights into the mechanisms regulating installation of rRNA and snRNA modifications, which are essential for ribosome function and pre-mRNA splicing.


Asunto(s)
ARN Helicasas , ARN Ribosómico , Humanos , Metilación , Ribosomas/metabolismo , ARN Helicasas/genética , Precursores del ARN/genética , Precursores del ARN/metabolismo , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/metabolismo
4.
ACS Chem Biol ; 18(12): 2441-2449, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37962075

RESUMEN

The chemical biology of native nucleic acid modifications has seen an intense upswing, first concerning DNA modifications in the field of epigenetics and then concerning RNA modifications in a field that was correspondingly rebaptized epitranscriptomics by analogy. The German Research Foundation (DFG) has funded several consortia with a scientific focus in these fields, strengthening the traditionally well-developed nucleic acid chemistry community and inciting it to team up with colleagues from the life sciences and data science to tackle interdisciplinary challenges. This Perspective focuses on the genesis, scientific outcome, and downstream impact of the DFG priority program SPP1784 and offers insight into how it fecundated further consortia in the field. Pertinent research was funded from mid-2015 to 2022, including an extension related to the coronavirus pandemic. Despite being a detriment to research activity in general, the pandemic has resulted in tremendously boosted interest in the field of RNA and RNA modifications as a consequence of their widespread and successful use in vaccination campaigns against SARS-CoV-2. Funded principal investigators published over 250 pertinent papers with a very substantial impact on the field. The program also helped to redirect numerous laboratories toward this dynamic field. Finally, SPP1784 spawned initiatives for several funded consortia that continue to drive the fields of nucleic acid modification.


Asunto(s)
Ácidos Nucleicos , ARN , Epigénesis Genética , Biología
5.
Nat Rev Mol Cell Biol ; 24(10): 749-769, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37474727

RESUMEN

RNA helicases are highly conserved proteins that use nucleoside triphosphates to bind or remodel RNA, RNA-protein complexes or both. RNA helicases are classified into the DEAD-box, DEAH/RHA, Ski2-like, Upf1-like and RIG-I families, and are the largest class of enzymes active in eukaryotic RNA metabolism - virtually all aspects of gene expression and its regulation involve RNA helicases. Mutation and dysregulation of these enzymes have been linked to a multitude of diseases, including cancer and neurological disorders. In this Review, we discuss the regulation and functional mechanisms of RNA helicases and their roles in eukaryotic RNA metabolism, including in transcription regulation, pre-mRNA splicing, ribosome assembly, translation and RNA decay. We highlight intriguing models that link helicase structure, mechanisms of function (such as local strand unwinding, translocation, winching, RNA clamping and displacing RNA-binding proteins) and biological roles, including emerging connections between RNA helicases and cellular condensates formed through liquid-liquid phase separation. We also discuss associations of RNA helicases with human diseases and recent efforts towards the design of small-molecule inhibitors of these pivotal regulators of eukaryotic gene expression.


Asunto(s)
ARN Helicasas , ARN , Humanos , ARN Helicasas/genética , ARN Helicasas/metabolismo , ARN/metabolismo , Células Eucariotas/metabolismo , ADN Helicasas , Saccharomyces cerevisiae/genética
6.
Nucleic Acids Res ; 51(14): 7496-7519, 2023 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-37283053

RESUMEN

Modified nucleotides in non-coding RNAs, such as tRNAs and snRNAs, represent an important layer of gene expression regulation through their ability to fine-tune mRNA maturation and translation. Dysregulation of such modifications and the enzymes installing them have been linked to various human pathologies including neurodevelopmental disorders and cancers. Several methyltransferases (MTases) are regulated allosterically by human TRMT112 (Trm112 in Saccharomyces cerevisiae), but the interactome of this regulator and targets of its interacting MTases remain incompletely characterized. Here, we have investigated the interaction network of human TRMT112 in intact cells and identify three poorly characterized putative MTases (TRMT11, THUMPD3 and THUMPD2) as direct partners. We demonstrate that these three proteins are active N2-methylguanosine (m2G) MTases and that TRMT11 and THUMPD3 methylate positions 10 and 6 of tRNAs, respectively. For THUMPD2, we discovered that it directly associates with the U6 snRNA, a core component of the catalytic spliceosome, and is required for the formation of m2G, the last 'orphan' modification in U6 snRNA. Furthermore, our data reveal the combined importance of TRMT11 and THUMPD3 for optimal protein synthesis and cell proliferation as well as a role for THUMPD2 in fine-tuning pre-mRNA splicing.


Asunto(s)
Precursores del ARN , Proteínas de Saccharomyces cerevisiae , Humanos , Precursores del ARN/genética , Precursores del ARN/metabolismo , Empalme del ARN , Empalmosomas/metabolismo , ARN Nuclear Pequeño/genética , ARN Nuclear Pequeño/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proliferación Celular/genética , Biosíntesis de Proteínas , Metiltransferasas/genética , ARNt Metiltransferasas/genética , Proteínas de Saccharomyces cerevisiae/genética
7.
Mol Cell ; 83(11): 1839-1855.e13, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37267905

RESUMEN

Localized translation is vital to polarized cells and requires precise and robust distribution of different mRNAs and ribosomes across the cell. However, the underlying molecular mechanisms are poorly understood and important players are lacking. Here, we discovered a Rab5 effector, the five-subunit endosomal Rab5 and RNA/ribosome intermediary (FERRY) complex, that recruits mRNAs and ribosomes to early endosomes through direct mRNA-interaction. FERRY displays preferential binding to certain groups of transcripts, including mRNAs encoding mitochondrial proteins. Deletion of FERRY subunits reduces the endosomal localization of transcripts in cells and has a significant impact on mRNA levels. Clinical studies show that genetic disruption of FERRY causes severe brain damage. We found that, in neurons, FERRY co-localizes with mRNA on early endosomes, and mRNA loaded FERRY-positive endosomes are in close proximity of mitochondria. FERRY thus transforms endosomes into mRNA carriers and plays a key role in regulating mRNA distribution and transport.


Asunto(s)
Endosomas , Proteínas de Unión al GTP rab5 , Proteínas de Unión al GTP rab5/genética , Proteínas de Unión al GTP rab5/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Endosomas/metabolismo , Transporte Biológico , Endocitosis/fisiología
8.
Biol Chem ; 404(8-9): 781-789, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37233600

RESUMEN

During their biogenesis, the ribosomal subunits undergo numerous structural and compositional changes to achieve their final architecture. RNA helicases are a key driving force of such remodelling events but deciphering their particular functions has long been challenging due to lack of knowledge of their molecular functions and RNA substrates. Advances in the biochemical characterisation of RNA helicase activities together with new insights into RNA helicase binding sites on pre-ribosomes and structural snapshots of pre-ribosomal complexes containing RNA helicases now open the door to a deeper understanding of precisely how different RNA helicases contribute to ribosomal subunit maturation.


Asunto(s)
ARN Helicasas , Proteínas de Saccharomyces cerevisiae , ARN Helicasas/química , Ribosomas/metabolismo , Subunidades Ribosómicas/metabolismo , ARN/metabolismo , Sitios de Unión , ARN Ribosómico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Nat Commun ; 14(1): 1886, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-37019967

RESUMEN

Activating signal co-integrator 1 complex (ASCC) subunit 3 (ASCC3) supports diverse genome maintenance and gene expression processes, and contains tandem Ski2-like NTPase/helicase cassettes crucial for these functions. Presently, the molecular mechanisms underlying ASCC3 helicase activity and regulation remain unresolved. We present cryogenic electron microscopy, DNA-protein cross-linking/mass spectrometry as well as in vitro and cellular functional analyses of the ASCC3-TRIP4 sub-module of ASCC. Unlike the related spliceosomal SNRNP200 RNA helicase, ASCC3 can thread substrates through both helicase cassettes. TRIP4 docks on ASCC3 via a zinc finger domain and stimulates the helicase by positioning an ASC-1 homology domain next to the C-terminal helicase cassette of ASCC3, likely supporting substrate engagement and assisting the DNA exit. TRIP4 binds ASCC3 mutually exclusively with the DNA/RNA dealkylase, ALKBH3, directing ASCC3 for specific processes. Our findings define ASCC3-TRIP4 as a tunable motor module of ASCC that encompasses two cooperating NTPase/helicase units functionally expanded by TRIP4.


Asunto(s)
ADN Helicasas , Nucleósido-Trifosfatasa , Nucleósido-Trifosfatasa/metabolismo , ADN Helicasas/metabolismo , Empalmosomas/metabolismo , ARN Helicasas/metabolismo , ADN/metabolismo
10.
Proc Natl Acad Sci U S A ; 120(9): e2204933120, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36812208

RESUMEN

N6-methyladenosine (m6A) regulates mRNA metabolism. While it has been implicated in the development of the mammalian brain and in cognition, the role of m6A in synaptic plasticity, especially during cognitive decline, is not fully understood. In this study, we employed methylated RNA immunoprecipitation sequencing to obtain the m6A epitranscriptome of the hippocampal subregions CA1, CA3, and the dentate gyrus and the anterior cingulate cortex (ACC) in young and aged mice. We observed a decrease in m6A levels in aged animals. Comparative analysis of cingulate cortex (CC) brain tissue from cognitively intact human subjects and Alzheimer's disease (AD) patients showed decreased m6A RNA methylation in AD patients. m6A changes common to brains of aged mice and AD patients were found in transcripts linked to synaptic function including calcium/calmodulin-dependent protein kinase 2 (CAMKII) and AMPA-selective glutamate receptor 1 (Glua1). We used proximity ligation assays to show that reduced m6A levels result in decreased synaptic protein synthesis as exemplified by CAMKII and GLUA1. Moreover, reduced m6A levels impaired synaptic function. Our results suggest that m6A RNA methylation controls synaptic protein synthesis and may play a role in cognitive decline associated with aging and AD.


Asunto(s)
Enfermedad de Alzheimer , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Humanos , Ratones , Animales , Anciano , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Hipocampo/metabolismo , Enfermedad de Alzheimer/metabolismo , Envejecimiento/metabolismo , ARN/metabolismo , Mamíferos/genética
11.
Nucleic Acids Res ; 51(2): 744-764, 2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36610750

RESUMEN

Ribosomes are ribozymes, hence correct folding of the rRNAs during ribosome biogenesis is crucial to ensure catalytic activity. RNA helicases, which can modulate RNA-RNA and RNA/protein interactions, are proposed to participate in rRNA tridimensional folding. Here, we analyze the biochemical properties of Dbp6, a DEAD-box RNA helicase required for the conversion of the initial 90S pre-ribosomal particle into the first pre-60S particle. We demonstrate that in vitro, Dbp6 shows ATPase as well as annealing and clamping activities negatively regulated by ATP. Mutations in Dbp6 core motifs involved in ATP binding and ATP hydrolysis are lethal and impair Dbp6 ATPase activity but increase its RNA binding and RNA annealing activities. These data suggest that correct regulation of these activities is important for Dbp6 function in vivo. Using in vivo cross-linking (CRAC) experiments, we show that Dbp6 interacts with 25S rRNA sequences located in the 5' domain I and in the peptidyl transferase center (PTC), and also crosslinks to snoRNAs hybridizing to the immature PTC. We propose that the ATPase and RNA clamping/annealing activities of Dbp6 modulate interactions of snoRNAs with the immature PTC and/or contribute directly to the folding of this region.


Asunto(s)
ARN Helicasas DEAD-box , Ribosomas , Proteínas de Saccharomyces cerevisiae , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Peptidil Transferasas/genética , Peptidil Transferasas/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , ARN Helicasas/genética , ARN Ribosómico/metabolismo , ARN Nucleolar Pequeño/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Trends Biochem Sci ; 48(3): 213-215, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36207216

RESUMEN

A common aspect of ribosome assembly, conserved across all domains of life, is the establishment of connections between the 5' and 3' ends of the large subunit (LSU) ribosomal RNA (rRNA) to initiate rRNA domain compaction and subunit assembly. We discuss the diverse mechanisms employed in different organisms to accomplish this important event.


Asunto(s)
ARN Ribosómico , Proteínas de Saccharomyces cerevisiae , Subunidades Ribosómicas Grandes , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Ribosómicas/genética
13.
Nat Commun ; 13(1): 7184, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36418294

RESUMEN

mRNA level is controlled by factors that mediate both mRNA synthesis and decay, including the 5' to 3' exonuclease Xrn1. Here we show that nucleocytoplasmic shuttling of several yeast mRNA decay factors plays a key role in determining both mRNA synthesis and decay. Shuttling is regulated by RNA-controlled binding of the karyopherin Kap120 to two nuclear localization sequences (NLSs) in Xrn1, location of one of which is conserved from yeast to human. The decaying RNA binds and masks NLS1, establishing a link between mRNA decay and Xrn1 shuttling. Preventing Xrn1 import, either by deleting KAP120 or mutating the two Xrn1 NLSs, compromises transcription and, unexpectedly, also cytoplasmic decay, uncovering a cytoplasmic decay pathway that initiates in the nucleus. Most mRNAs are degraded by both pathways - the ratio between them represents a full spectrum. Importantly, Xrn1 shuttling is required for proper responses to environmental changes, e.g., fluctuating temperatures, involving proper changes in mRNA abundance and in cell proliferation rate.


Asunto(s)
ARN , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , ARN/metabolismo , Estabilidad del ARN , Transcripción Genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
14.
Nucleic Acids Res ; 50(16): 9012-9022, 2022 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-35993807

RESUMEN

Dynamic regulation of RNA folding and structure is critical for the biogenesis and function of RNAs and ribonucleoprotein (RNP) complexes. Through their nucleotide triphosphate-dependent remodelling functions, RNA helicases are key modulators of RNA/RNP structure. While some RNA helicases are dedicated to a specific target RNA, others are multifunctional and engage numerous substrate RNAs in different aspects of RNA metabolism. The discovery of such multitasking RNA helicases raises the intriguing question of how these enzymes can act on diverse RNAs but also maintain specificity for their particular targets within the RNA-dense cellular environment. Furthermore, the identification of RNA helicases that sit at the nexus between different aspects of RNA metabolism raises the possibility that they mediate cross-regulation of different cellular processes. Prominent and extensively characterized multifunctional DEAH/RHA-box RNA helicases are DHX15 and its Saccharomyces cerevisiae (yeast) homologue Prp43. Due to their central roles in key cellular processes, these enzymes have also served as prototypes for mechanistic studies elucidating the mode of action of this type of enzyme. Here, we summarize the current knowledge on the structure, regulation and cellular functions of Prp43/DHX15, and discuss the general concept and implications of RNA helicase multifunctionality.


Asunto(s)
ARN Helicasas , Proteínas de Saccharomyces cerevisiae , ARN Helicasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , ARN Helicasas DEAD-box/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , ARN/química , Expresión Génica
15.
Trends Biochem Sci ; 47(7): 596-608, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35365384

RESUMEN

Modified nucleotides within cellular RNAs significantly influence their biogenesis, stability, and function. As reviewed here, 3-methylcytidine (m3C) has recently come to the fore through the identification of the methyltransferases responsible for installing m3C32 in human tRNAs. Mechanistic details of how m3C32 methyltransferases recognize their substrate tRNAs have been uncovered and the biogenetic and functional relevance of interconnections between m3C32 and modified adenosines at position 37 highlighted. Functional insights into the role of m3C32 modifications indicate that they influence tRNA structure and, consistently, lack of m3C32 modifications impairs translation. Development of quantitative, transcriptome-wide m3C mapping approaches and the discovery of an m3C demethylase reveal m3C to be dynamic, raising the possibility that it contributes to fine-tuning gene expression in different conditions.


Asunto(s)
Citidina , ARN , Citidina/análogos & derivados , Citidina/metabolismo , Humanos , Metiltransferasas/metabolismo , ARN de Transferencia/metabolismo
16.
Nat Commun ; 13(1): 209, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35017528

RESUMEN

Modified nucleotides in tRNAs are important determinants of folding, structure and function. Here we identify METTL8 as a mitochondrial matrix protein and active RNA methyltransferase responsible for installing m3C32 in the human mitochondrial (mt-)tRNAThr and mt-tRNASer(UCN). METTL8 crosslinks to the anticodon stem loop (ASL) of many mt-tRNAs in cells, raising the question of how methylation target specificity is achieved. Dissection of mt-tRNA recognition elements revealed U34G35 and t6A37/(ms2)i6A37, present concomitantly only in the ASLs of the two substrate mt-tRNAs, as key determinants for METTL8-mediated methylation of C32. Several lines of evidence demonstrate the influence of U34, G35, and the m3C32 and t6A37/(ms2)i6A37 modifications in mt-tRNAThr/Ser(UCN) on the structure of these mt-tRNAs. Although mt-tRNAThr/Ser(UCN) lacking METTL8-mediated m3C32 are efficiently aminoacylated and associate with mitochondrial ribosomes, mitochondrial translation is mildly impaired by lack of METTL8. Together these results define the cellular targets of METTL8 and shed new light on the role of m3C32 within mt-tRNAs.


Asunto(s)
Anticodón/química , Metiltransferasas/genética , Mitocondrias/genética , ARN Mitocondrial/química , ARN de Transferencia de Serina/química , ARN de Transferencia de Treonina/química , Anticodón/metabolismo , Emparejamiento Base , Citosina/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Humanos , Metilación , Metiltransferasas/metabolismo , Mitocondrias/metabolismo , Conformación de Ácido Nucleico , Unión Proteica , Biosíntesis de Proteínas , ARN Mitocondrial/genética , ARN Mitocondrial/metabolismo , ARN de Transferencia de Serina/genética , ARN de Transferencia de Serina/metabolismo , ARN de Transferencia de Treonina/genética , ARN de Transferencia de Treonina/metabolismo , Transducción de Señal
17.
Front Microbiol ; 12: 739000, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34603269

RESUMEN

Ribosome assembly is an essential and carefully choreographed cellular process. In eukaryotes, several 100 proteins, distributed across the nucleolus, nucleus, and cytoplasm, co-ordinate the step-wise assembly of four ribosomal RNAs (rRNAs) and approximately 80 ribosomal proteins (RPs) into the mature ribosomal subunits. Due to the inherent complexity of the assembly process, functional studies identifying ribosome biogenesis factors and, more importantly, their precise functions and interplay are confined to a few and very well-established model organisms. Although best characterized in yeast (Saccharomyces cerevisiae), emerging links to disease and the discovery of additional layers of regulation have recently encouraged deeper analysis of the pathway in human cells. In archaea, ribosome biogenesis is less well-understood. However, their simpler sub-cellular structure should allow a less elaborated assembly procedure, potentially providing insights into the functional essentials of ribosome biogenesis that evolved long before the diversification of archaea and eukaryotes. Here, we use a comprehensive phylogenetic profiling setup, integrating targeted ortholog searches with automated scoring of protein domain architecture similarities and an assessment of when search sensitivity becomes limiting, to trace 301 curated eukaryotic ribosome biogenesis factors across 982 taxa spanning the tree of life and including 727 archaea. We show that both factor loss and lineage-specific modifications of factor function modulate ribosome biogenesis, and we highlight that limited sensitivity of the ortholog search can confound evolutionary conclusions. Projecting into the archaeal domain, we find that only few factors are consistently present across the analyzed taxa, and lineage-specific loss is common. While members of the Asgard group are not special with respect to their inventory of ribosome biogenesis factors (RBFs), they unite the highest number of orthologs to eukaryotic RBFs in one taxon. Using large ribosomal subunit maturation as an example, we demonstrate that archaea pursue a simplified version of the corresponding steps in eukaryotes. Much of the complexity of this process evolved on the eukaryotic lineage by the duplication of ribosomal proteins and their subsequent functional diversification into ribosome biogenesis factors. This highlights that studying ribosome biogenesis in archaea provides fundamental information also for understanding the process in eukaryotes.

18.
Nat Commun ; 12(1): 6153, 2021 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-34686656

RESUMEN

Synthesis of eukaryotic ribosomes involves the assembly and maturation of precursor particles (pre-ribosomal particles) containing ribosomal RNA (rRNA) precursors, ribosomal proteins (RPs) and a plethora of assembly factors (AFs). Formation of the earliest precursors of the 60S ribosomal subunit (pre-60S r-particle) is among the least understood stages of ribosome biogenesis. It involves the Npa1 complex, a protein module suggested to play a key role in the early structuring of the pre-rRNA. Npa1 displays genetic interactions with the DExD-box protein Dbp7 and interacts physically with the snR190 box C/D snoRNA. We show here that snR190 functions as a snoRNA chaperone, which likely cooperates with the Npa1 complex to initiate compaction of the pre-rRNA in early pre-60S r-particles. We further show that Dbp7 regulates the dynamic base-pairing between snR190 and the pre-rRNA within the earliest pre-60S r-particles, thereby participating in structuring the peptidyl transferase center (PTC) of the large ribosomal subunit.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Chaperonas Moleculares/metabolismo , ARN Nucleolar Pequeño/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Emparejamiento Base , ARN Helicasas DEAD-box/genética , Chaperonas Moleculares/genética , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Biogénesis de Organelos , Pliegue del ARN , Precursores del ARN/química , Precursores del ARN/genética , Precursores del ARN/metabolismo , ARN Ribosómico/química , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , ARN Nucleolar Pequeño/genética , Subunidades Ribosómicas Grandes de Eucariotas/química , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética
19.
Nat Commun ; 12(1): 6152, 2021 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-34686661

RESUMEN

Early pre-60S ribosomal particles are poorly characterized, highly dynamic complexes that undergo extensive rRNA folding and compaction concomitant with assembly of ribosomal proteins and exchange of assembly factors. Pre-60S particles contain numerous RNA helicases, which are likely regulators of accurate and efficient formation of appropriate rRNA structures. Here we reveal binding of the RNA helicase Dbp7 to domain V/VI of early pre-60S particles in yeast and show that in the absence of this protein, dissociation of the Npa1 scaffolding complex, release of the snR190 folding chaperone, recruitment of the A3 cluster factors and binding of the ribosomal protein uL3 are impaired. uL3 is critical for formation of the peptidyltransferase center (PTC) and is responsible for stabilizing interactions between the 5' and 3' ends of the 25S, an essential pre-requisite for subsequent pre-60S maturation events. Highlighting the importance of pre-ribosome remodeling by Dbp7, our data suggest that in the absence of Dbp7 or its catalytic activity, early pre-ribosomal particles are targeted for degradation.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , ARN Ribosómico/química , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , ARN Helicasas DEAD-box/genética , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/metabolismo , Pliegue del ARN , Precursores del ARN/química , Precursores del ARN/metabolismo , Procesamiento Postranscripcional del ARN , ARN Ribosómico/metabolismo , ARN Nucleolar Pequeño/metabolismo , Proteína Ribosomal L3/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
20.
Cell ; 184(23): 5824-5837.e15, 2021 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-34672953

RESUMEN

The human mitochondrial genome encodes thirteen core subunits of the oxidative phosphorylation system, and defects in mitochondrial gene expression lead to severe neuromuscular disorders. However, the mechanisms of mitochondrial gene expression remain poorly understood due to a lack of experimental approaches to analyze these processes. Here, we present an in vitro system to silence translation in purified mitochondria. In vitro import of chemically synthesized precursor-morpholino hybrids allows us to target translation of individual mitochondrial mRNAs. By applying this approach, we conclude that the bicistronic, overlapping ATP8/ATP6 transcript is translated through a single ribosome/mRNA engagement. We show that recruitment of COX1 assembly factors to translating ribosomes depends on nascent chain formation. By defining mRNA-specific interactomes for COX1 and COX2, we reveal an unexpected function of the cytosolic oncofetal IGF2BP1, an RNA-binding protein, in mitochondrial translation. Our data provide insight into mitochondrial translation and innovative strategies to investigate mitochondrial gene expression.


Asunto(s)
Regulación de la Expresión Génica , Silenciador del Gen , Genes Mitocondriales , Transporte de Electrón , Complejo IV de Transporte de Electrones/genética , Células HEK293 , Humanos , Proteínas Mitocondriales/metabolismo , Oligonucleótidos/química , Fosforilación Oxidativa , Biosíntesis de Proteínas , Subunidades de Proteína/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Mitocondrial/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...