Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Front Nutr ; 10: 1020678, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37404855

RESUMEN

Background: Clinical studies on effects of marine-derived omega-3 (n-3) polyunsaturated fatty acids (PUFAs), mainly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and the plant-derived omega-6 (n-6) PUFA linoleic acid (LA) on lipoprotein-lipid components and glucose-insulin homeostasis have shown conflicting results, which may partly be explained by differential responses in females and males. However, we have lacked data on sexual dimorphism in the response of cardiometabolic risk markers following increased consumption of n-3 or n-6 PUFAs. Objective: To explore sex-specific responses after n-3 (EPA + DHA) or n-6 (LA) PUFA supplementation on circulating lipoprotein subfractions, standard lipids, apolipoproteins, fatty acids in red blood cell membranes, and markers of glycemic control/insulin sensitivity among people with abdominal obesity. Methods: This was a randomized double-blind crossover study with two 7-week intervention periods separated by a 9-week washout phase. Females (n = 16) were supplemented with 3 g/d of EPA + DHA (fish oil) or 15 g/d of LA (safflower oil), while males (n = 23) received a dose of 4 g/d of EPA + DHA or 20 g/d of LA. In fasting blood samples, we measured lipoprotein particle subclasses, standard lipids, apolipoproteins, fatty acid profiles, and markers of glycemic control/insulin sensitivity. Results: The between-sex difference in relative change scores was significant after n-3 for total high-density lipoproteins (females/males: -11%*/-3.3%, p = 0.036; *: significant within-sex change), high-density lipoprotein particle size (+2.1%*/-0.1%, p = 0.045), and arachidonic acid (-8.3%*/-12%*, p = 0.012), and after n-6 for total (+37%*/+2.1%, p = 0.041) and small very-low-density lipoproteins (+97%*/+14%, p = 0.021), and lipoprotein (a) (-16%*/+0.1%, p = 0.028). Circulating markers of glucose-insulin homeostasis differed significantly after n-3 for glucose (females/males: -2.1%/+3.9%*, p = 0.029), insulin (-31%*/+16%, p < 0.001), insulin C-peptide (-12%*/+13%*, p = 0.001), homeostasis model assessment of insulin resistance index 2 (-12%*/+14%*, p = 0.001) and insulin sensitivity index 2 (+14%*/-12%*, p = 0.001), and quantitative insulin sensitivity check index (+4.9%*/-3.4%*, p < 0.001). Conclusion: We found sex-specific responses after high-dose n-3 (but not n-6) supplementation in circulating markers of glycemic control/insulin sensitivity, which improved in females but worsened in males. This may partly be related to the sex differences we observed in several components of the lipoprotein-lipid profile following the n-3 intervention. Clinical trial registration: https://clinicaltrials.gov/, identifier [NCT02647333].

2.
DNA Repair (Amst) ; 120: 103410, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36244177

RESUMEN

Fatty liver diseases are a major health threat across the western world, leading to cirrhosis and premature morbidity and mortality. Recently, a correlation between the base excision repair enzyme SMUG1 and metabolic homeostasis was identified. As the molecular mechanisms remain unknown, we exploited a SMUG1-knockout mouse model to gain insights into this association by characterizing the liver phenotype in young vs old SMUG1-null mice. We observed increased weight and fat content in one-year old animals, with altered activity of enzymes important for fatty acids influx and uptake. Consistently, lipidomic profiling showed accumulation of free fatty acids and triglycerides in SMUG1-null livers. Old SMUG1-knockout mice also displayed increased hepatocyte senescence and DNA damage at telomeres. Interestingly, RNA sequencing revealed widespread changes in the expression of lipid metabolic genes already in three months old animals. In summary, SMUG1 modulates fat metabolism favouring net lipogenesis and resulting in development of a fatty liver phenotype.


Asunto(s)
Hígado Graso , Uracil-ADN Glicosidasa , Ratones , Animales , Uracil-ADN Glicosidasa/metabolismo , Hígado Graso/metabolismo , Ratones Noqueados , Fenotipo , Homeostasis , Hígado/metabolismo
3.
J Clin Immunol ; 42(1): 146-157, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34669143

RESUMEN

PURPOSE: Fatty acid (FA) abnormalities are found in various inflammatory disorders and have been related to disturbed gut microbiota. Patients with common variable immunodeficiency (CVID) have inflammatory complications associated with altered gut microbial composition. We hypothesized that there is an altered FA profile in CVID patients, related to gut microbial dysbiosis. METHODS: Plasma FAs were measured in 39 CVID patients and 30 healthy controls. Gut microbial profile, a food frequency questionnaire, and the effect of the oral antibiotic rifaximin were investigated in CVID patients. RESULTS: The n-3 polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA) (1.4 [1.0-1.8] vs. 1.9 [1.2-2.5], median (IQR), P < 0.05), and docosahexaenoic acid (DHA) (3.2 [2.4-3.9] vs. 3.5 [2.9-4.3], P < 0.05), all values expressed as weight percent of total plasma FAs, were reduced in CVID compared to controls. Also, n-6 PUFAs (34.3 ± 3.4 vs. 37.1 ± 2.8, mean ± SD, P < 0.001) and linoleic acid (LA) (24.5 ± 3.3 vs. 28.1 ± 2.7, P < 0.0001) and the FA anti-inflammatory index (98.9 [82.1-119.4] vs. 117.0 [88.7-153.1], median (IQR), P < 0.05) were reduced in CVID. The microbial alpha diversity was positively associated with plasma n-6 PUFAs (r = 0.41, P < 0.001) and LA (r = 0.51, P < 0.001), but not n-3 PUFAs (P = 0.78). Moreover, a 2-week course of rifaximin significantly reduced the proportion of n-6 PUFAs (P = 0.04, UNIANOVA). Serum immunoglobulin G (IgG) levels correlated with plasma n-3 PUFAs (rho = 0.36, P = 0.03) and DHA (rho = 0.41, P = 0.009). CONCLUSION: We found a potentially unfavorable FA profile in CVID, related to low IgG levels. High plasma n-6 PUFAs were related to increased gut microbial diversity and altered by rifaximin therapy.


Asunto(s)
Inmunodeficiencia Variable Común , Ácidos Grasos Omega-3 , Microbioma Gastrointestinal , Inmunodeficiencia Variable Común/tratamiento farmacológico , Ácidos Grasos/farmacología , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Omega-6/farmacología , Humanos
4.
J Nutr ; 151(9): 2610-2621, 2021 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-34132338

RESUMEN

BACKGROUND: Low-carbohydrate diets are suggested to exert metabolic benefits by reducing circulating triacylglycerol (TG) concentrations, possibly by enhancing mitochondrial activity. OBJECTIVE: We aimed to elucidate mechanisms by which dietary carbohydrate and fat differentially affect hepatic and circulating TG, and how these mechanisms relate to fatty acid composition. METHODS: Six-week-old, ∼300 g male Wistar rats were fed a high-carbohydrate, low-fat [HC; 61.3% of energy (E%) carbohydrate] or a low-carbohydrate, high-fat (HF; 63.5 E% fat) diet for 4 wk. Parameters of lipid metabolism and mitochondrial function were measured in plasma and liver, with fatty acid composition (GC), high-energy phosphates (HPLC), carnitine metabolites (HPLC-MS/MS), and hepatic gene expression (qPCR) as main outcomes. RESULTS: In HC-fed rats, plasma TG was double and hepatic TG 27% of that in HF-fed rats. The proportion of oleic acid (18:1n-9) was 60% higher after HF vs. HC feeding while the proportion of palmitoleic acid (16:1n-7) and vaccenic acid (18:1n-7), and estimated activities of stearoyl-CoA desaturase, SCD-16 (16:1n-7/16:0), and de novo lipogenesis (16:0/18:2n-6) were 1.5-7.5-fold in HC vs. HF-fed rats. Accordingly, hepatic expression of fatty acid synthase (Fasn) and acetyl-CoA carboxylase (Acaca/Acc) was strongly upregulated after HC feeding, accompanied with 8-fold higher FAS activity and doubled ACC activity. There were no differences in expression of liver-specific biomarkers of mitochondrial biogenesis and activity (Cytc, Tfam, Cpt1, Cpt2, Ucp2, Hmgcs2); concentrations of ATP, AMP, and energy charge; plasma carnitine/acylcarnitine metabolites; or peroxisomal fatty acid oxidation. CONCLUSIONS: In male Wistar rats, dietary carbohydrate was converted into specific fatty acids via hepatic lipogenesis, contributing to higher plasma TG and total fatty acids compared with high-fat feeding. In contrast, the high-fat, low-carbohydrate feeding increased hepatic fatty acid content, without affecting hepatic mitochondrial fatty acid oxidation.


Asunto(s)
Dieta Alta en Grasa , Lipidómica , Animales , Carbohidratos de la Dieta/metabolismo , Metabolismo Energético , Ácidos Grasos/metabolismo , Lipogénesis , Hígado/metabolismo , Masculino , Ratas , Ratas Wistar , Espectrometría de Masas en Tándem , Triglicéridos/metabolismo
5.
Clin Nutr ; 40(5): 2556-2575, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33933722

RESUMEN

BACKGROUND & AIMS: Marine-derived omega-3 (n-3) polyunsaturated fatty acids (PUFAs), mainly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), lower circulating levels of triacylglycerols (TAGs), and the plant-derived omega-6 (n-6) PUFA linoleic acid (LA) may reduce cholesterol levels. Clinical studies on effects of these dietary or supplemental PUFAs on other blood fat fractions are few and have shown conflicting results. This study aimed to determine effects of high-dose supplemental n-3 (EPA + DHA) and n-6 (LA) PUFAs from high-quality oils on circulating lipoprotein subfractions and standard lipids (primary outcomes), as well as apolipoproteins, fatty acids, and glycemic control (secondary outcomes), in females and males with abdominal obesity. METHODS: This was a randomized double-blind crossover study with two 7-wk intervention periods separated by a 9-wk washout phase. Females (n = 16) were supplemented with 3 g/d of EPA + DHA (TAG fish oil) or 15 g/d of LA (safflower oil), while males (n = 23) received a dose of 4 g/d of EPA + DHA or 20 g/d of LA. In fasting blood samples, we investigated lipoprotein particle subclasses by nuclear magnetic resonance spectroscopy, as well as standard lipids, apolipoproteins, fatty acid profiles, and glucose and insulin. Data were analyzed by linear mixed-effects modeling with 'subjects' as the random factor. RESULTS: The difference between interventions in relative change scores was among the lipoprotein subfractions significant for total very-low-density lipoproteins (VLDLs) (n-3 vs. n-6: -38%∗ vs. +16%, p < 0.001; ∗: significant within-treatment change score), large VLDLs (-58%∗ vs. -0.91%, p < 0.001), small VLDLs (-57%∗ vs. +41%∗, p < 0.001), total low-density lipoproteins (LDLs) (+5.8%∗ vs. -4.3%∗, p = 0.002), large LDLs (+23%∗ vs. -2.1%, p = 0.004), total high-density lipoproteins (HDLs) (-6.0%∗ vs. +3.7%, p < 0.001), large HDLs (+11%∗ vs. -5.3%, p = 0.001), medium HDLs (-24%∗ vs. +6.2%, p = 0.030), and small HDLs (-9.9%∗ vs. +9.6%∗, p = 0.002), and among standard lipids for TAGs (-16%∗ vs. -2.6%, p = 0.014), non-esterified fatty acids (-19%∗ vs. +5.5%, p = 0.033), and total cholesterol (-0.28% vs. -4.4%∗, p = 0.042). A differential response in relative change scores was also found for apolipoprotein (apo)B (+0.40% vs. -6.0%∗, p = 0.008), apoA-II (-6.0%∗ vs. +1.5%, p = 0.001), apoC-II (-11%∗ vs. -1.7%, p = 0.025), and apoE (+3.3% vs. -3.8%, p = 0.028). CONCLUSIONS: High-dose supplementation of high-quality oils with n-3 (EPA + DHA) or n-6 (LA) PUFAs was followed by reductions in primarily TAG- or cholesterol-related markers, respectively. The responses after both interventions point to changes in the lipoprotein-lipid-apolipoprotein profile that have been associated with reduced cardiometabolic risk, also among people with TAG or LDL-C levels within the normal range. REGISTRATION: Registered under ClinicalTrials.gov Identifier: NCT02647333. CLINICAL TRIAL REGISTRATION: Registered at https://clinicaltrials.gov/ct2/show/NCT02647333.


Asunto(s)
Apolipoproteínas/sangre , Ácidos Grasos Omega-3/administración & dosificación , Ácidos Grasos Omega-6/administración & dosificación , Lípidos/sangre , Lipoproteínas/clasificación , Biomarcadores/sangre , Estudios Cruzados , Suplementos Dietéticos , Método Doble Ciego , Femenino , Humanos , Masculino , Persona de Mediana Edad , Obesidad Abdominal
6.
Food Sci Nutr ; 8(7): 3052-3060, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32724569

RESUMEN

Chicken protein hydrolysates (CPHs) generated from rest raw materials through enzymatic hydrolysis using Corolase PP or Alcalase were shown to reduce inflammation and stimulate hepatic mitochondrial fatty acid oxidation in high-fat-fed mice. This study investigates the effect of CPH diets in atherosclerosis-prone apolipoprotein E-deficient (Apoe-/-) mice. Apoe-/- mice were divided into three groups of 12 animals and fed high-fat diets with casein (control), Alcalase CPH, or Corolase PP CPH. After 12 weeks, mice were sacrificed, blood samples were collected, and aorta was dissected for subsequent én face analysis. Mice fed Corolase PP CPH but not Alcalase CPH had significantly lower % atherosclerotic plaque area in the aortic arch compared to controls (p = .015 and p = .077, respectively). Plasma and liver cholesterol and triacylglycerol remained constant, but levels of the fatty acid C20:5n-3 were increased, accompanied by an elevated delta-5 desaturase index in both CPHs groups. Moreover, a significant reduction of plasma MCP-1 was detected in Corolase PP CPH compared to control. Overall, our data show that protein hydrolysates from chicken reduced atherosclerosis and attenuated systemic risk factors related to atherosclerotic disorders, not related to changes in the level of plasma cholesterol.

7.
ESC Heart Fail ; 7(2): 456-466, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31978943

RESUMEN

AIMS: Recent reports have suggested that patients with heart failure (HF) have an altered gut microbiota composition; however, associations with diet remain largely uninvestigated. We aimed to explore differences in the gut microbiota between patients with HF with reduced ejection fraction and healthy controls, focusing on associations with diet and disease severity. METHODS AND RESULTS: The microbiota composition of two cross-sectional cohorts (discovery, n = 40 and validation, n = 44) of patients with systolic HF and healthy controls (n = 266) was characterized by sequencing of the bacterial 16S rRNA gene. The overall microbial community (beta diversity) differed between patients with HF and healthy controls in both cohorts (P < 0.05). Patients with HF had shifts in the major bacterial phyla, resulting in a lower Firmicutes/Bacteroidetes (F/B) ratio than controls (P = 0.005). Patients reaching a clinical endpoint (listing for heart transplant or death) had lower bacterial richness and lower F/B ratio than controls (P < 0.01). Circulating levels of trimethylamine-N-oxide were associated with meat intake (P = 0.016), but not with gut microbiota alterations in HF. Low bacterial richness and low abundance of several genera in the Firmicutes phylum were associated with low fibre intake. CONCLUSIONS: The gut microbiota in HF was characterized by decreased F/B ratio and reduced bacterial diversity associated with clinical outcome. The gut microbiota alterations in HF were partly related to low fibre intake, emphasizing the importance of diet as a covariate in future studies. Our data could provide a rationale for targeting the gut microbiota in HF with high-fibre diet.


Asunto(s)
Microbioma Gastrointestinal , Insuficiencia Cardíaca , Microbiota , Estudios Transversales , Humanos , ARN Ribosómico 16S
8.
PPAR Res ; 2019: 8047627, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31308847

RESUMEN

Dietary fatty acids (FAs) affect certain metabolic routes, including pathways controlled by the peroxisome proliferator-activated receptors (PPARs), but tissue-specific effects are not well-defined. Thus, the aim was to compare the metabolic response in hepatic, adipose, and cardiac tissues after treatment with specific PPAR agonists. Male Wistar rats were randomized into three groups: a control group receiving placebo (n=8); a PPARα agonist group receiving WY-14,643 (n=6); and a PPARγ agonist group receiving rosiglitazone (n=6) for 12 days. All animals received a low-fat standard chow diet and were given a daily dose of placebo or agonist orally. Lipids and FA methyl esters were measured in plasma, liver, and heart and gene expression was measured in liver and adipose tissue, while enzyme activities were measured in liver. Treatment with the PPARα agonist was associated with higher liver mass relative to body weight (liver index), lower plasma, and hepatic total cholesterol, as well as lower plasma carnitine and acylcarnitines, compared with control. In heart, PPARα activation leads to overall lower levels of free FAs and specific changes in certain FAs, compared with control. Furthermore, ß-oxidation in liver and the enzymatic activities of well-known PPARα targeted genes were higher following PPARα administration. Overall, rats treated with the PPARα agonist had higher hepatic saturated FAs (SFAs) and monounsaturated FAs (MUFAs) and lower n-6 and n-3 PUFAs, compared to control. Treatment with the PPARγ agonist was associated with a lower liver index, lower plasma triglycerides (TAG) and phospholipids, and higher hepatic phospholipids, compared with control. PPARγ target genes were increased specifically in adipose tissue. Moreover, lower total cardiac FAs and SFA and higher cardiac n-6 PUFA were also associated with PPARγ activation. Altogether, there were characteristic effects of PPARα activation in liver and heart, as well as in plasma. PPARγ effects were not only confined to adipose tissue, but specific effects were also seen in liver, heart, and plasma. In conclusion, short-term treatment with PPAR agonists induced tissue-specific effects on FA composition in liver and heart. Moreover, both PPARα and PPARγ activation lowered plasma TAG and phospholipids, most likely through effects on liver and adipose tissue, respectively. In future studies we aim to reveal whether similar patterns can be found through diet-induced activation of specific pathways.

9.
Scand J Clin Lab Invest ; 77(8): 628-633, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29069988

RESUMEN

BACKGROUND: Obesity is a global pandemic leading to increased mortality and increased risk of cardiovascular disease. Bariatric surgery is an established treatment of obesity leading to weight loss and reduction of mortality. To further elucidate how bariatric surgery improves metabolic control, we explored the fatty acid (FA) profiles in morbidly obese subjects treated with lifestyle intervention and subsequent bariatric surgery. METHODS: The intervention group consisted of 34 morbidly obese patients scheduled for bariatric surgery and the control group of 17 non-obese patients scheduled for elective laparoscopic procedures. The intervention group had to undergo lifestyle changes preoperatively. Fasting blood samples were drawn at admission, after lifestyle intervention and 1 year after bariatric surgery. RESULTS: At admission, the morbidly obese patients had significantly higher levels of monounsaturated FAs (MUFAs) and lower levels of n-6 polyunsaturated FAs (PUFAs) and n-3 PUFAs than healthy controls (all p-values <.05). In the intervention group, there was a significantly lower level of total FAs after lifestyle intervention, and from admission to 1 year after surgical intervention (both, p < .05), primarily reflecting a lower proportion of saturated FAs (SFAs). Following bariatric surgery, but not after lifestyle changes, there was an increase in the proportion of n-3 PUFA (p < .05) reaching levels not significantly different from healthy controls. CONCLUSIONS: Our findings suggest that a reduced proportion of the proposed anti-atherogenic n-3 PUFAs characterizes morbidly obese individuals, and that this FA profile is reversed by bariatric surgery, but not by lifestyle intervention.


Asunto(s)
Ácidos Grasos Omega-3/sangre , Obesidad Mórbida/sangre , Adulto , Cirugía Bariátrica , Estudios de Casos y Controles , Ayuno , Ácidos Grasos/sangre , Femenino , Humanos , Masculino , Persona de Mediana Edad , Obesidad Mórbida/cirugía , Factores de Riesgo , Resultado del Tratamiento , Pérdida de Peso
10.
Nat Genet ; 48(11): 1396-1406, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27723756

RESUMEN

Human gut microbiota is an important determinant for health and disease, and recent studies emphasize the numerous factors shaping its diversity. Here we performed a genome-wide association study (GWAS) of the gut microbiota using two cohorts from northern Germany totaling 1,812 individuals. Comprehensively controlling for diet and non-genetic parameters, we identify genome-wide significant associations for overall microbial variation and individual taxa at multiple genetic loci, including the VDR gene (encoding vitamin D receptor). We observe significant shifts in the microbiota of Vdr-/- mice relative to control mice and correlations between the microbiota and serum measurements of selected bile and fatty acids in humans, including known ligands and downstream metabolites of VDR. Genome-wide significant (P < 5 × 10-8) associations at multiple additional loci identify other important points of host-microbe intersection, notably several disease susceptibility genes and sterol metabolism pathway components. Non-genetic and genetic factors each account for approximately 10% of the variation in gut microbiota, whereby individual effects are relatively small.


Asunto(s)
Microbioma Gastrointestinal , Receptores de Calcitriol/genética , Adulto , Anciano , Anciano de 80 o más Años , Animales , Bacterias/clasificación , Bacterias/genética , Estudios de Cohortes , Dieta , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple
11.
Bioorg Med Chem ; 24(6): 1191-203, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26874397

RESUMEN

Thio-ether fatty acids (THEFAs), including the parent 2-(tetradecylthio)acetic acid (TTA), are modified fatty acids (FAs) that have profound effects on lipid metabolism given that they are blocked for ß-oxidation, and able to act as peroxisome proliferator-activated receptor (PPAR) agonists. Therefore, TTA in particular has been tested clinically for its therapeutic potential against metabolic syndrome related disorders. Here, we describe the preparation of THEFAs based on the TTA scaffold with either a double or a triple bond. These are tested in cultured human skeletal muscle cells (myotubes), either as free acid or following esterification as phospholipids, lysophospholipids or monoacylglycerols. Metabolic effects are assessed in terms of cellular bioavailabilities in myotubes, by FA substrate uptake and oxidation studies, and gene regulation studies with selected PPAR-regulated genes. We note that the inclusion of a triple bond promotes THEFA-mediated FA oxidation. Furthermore, esterification of THEFAs as lysophospholipids also promotes FA oxidation effects. Given that the apparent clinical benefits of TTA administration were offset by dose limitation and poor bioavailability, we discuss the possibility that a selection of our latest THEFAs and THEFA-containing lipids might be able to fulfill the therapeutic potential of the parent TTA while minimizing required doses for efficacy, side-effects and adverse reactions.


Asunto(s)
Éteres/farmacología , Ácidos Grasos/química , Ácidos Grasos/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Receptores Activados del Proliferador del Peroxisoma/agonistas , Compuestos de Sulfhidrilo/farmacología , Relación Dosis-Respuesta a Droga , Éteres/síntesis química , Éteres/química , Ácidos Grasos/síntesis química , Humanos , Estructura Molecular , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Relación Estructura-Actividad , Compuestos de Sulfhidrilo/síntesis química , Compuestos de Sulfhidrilo/química
12.
Lipids Health Dis ; 15: 24, 2016 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-26846427

RESUMEN

BACKGROUND: Hepatic mitochondrial dysfunction plays an important role in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Methyl donor supplementation has been shown to alleviate NAFLD, connecting the condition to the one-carbon metabolism. Thus, the objective was to investigate regulation of homocysteine (Hcy) and metabolites along the choline oxidation pathway during induction of hepatic steatosis by the fatty acid analogue tetradecylthiopropionic acid (TTP), an inhibitor of mitochondrial fatty acid oxidation. METHODS: Mice were fed a control diet, or diets containing 0.3 %, 0.6 %, or 0.9 % (w/w) TTP for 14 days. Blood and liver samples were collected, enzyme activities and gene expression were analyzed in liver, lipid and fatty acid composition in liver and plasma, one-carbon metabolites, B-vitamin status, carnitine and acylcarnitines were analyzed in plasma. RESULTS: Liver mitochondrial fatty acid oxidation decreased by 40 % and steatosis was induced in a dose dependent manner; total lipids increased 1.6-fold in animals treated with 0.3 % TTP, 2-fold with 0.6 % TTP and 2.1 fold with 0.9 % TTP compared to control. The higher hepatic concentration of fatty acids was associated with shortening of carbon-length. Furthermore, the inhibited fatty acid oxidation led to a 30-fold decrease in plasma carnitine and 9.3-fold decrease in acetylcarnitine at the highest dose of TTP, whereas an accumulation of palmitoylcarnitine resulted. Compared to the control diet, TTP administration was associated with elevated plasma total Hcy (control: 7.2 ± 0.3 umol/L, 0.9 % TTP: 30.5 ± 5.9 umol/L) and 1.4-1.6 fold increase in the one-carbon metabolites betaine, dimethylglycine, sarcosine and glycine, accompanied by changes in gene expression of the different B-vitamin dependent pathways of Hcy and choline metabolism. A positive correlation between total Hcy and hepatic triacylglycerol resulted. CONCLUSIONS: The TTP-induced inhibition of mitochondrial fatty acid oxidation was not associated with increased hepatic oxidative stress or inflammation. Our data suggest a link between mitochondrial dysfunction and the methylation processes within the one-carbon metabolism in mice.


Asunto(s)
Hígado Graso/inducido químicamente , Homocisteína/sangre , Hígado/efectos de los fármacos , Hígado/metabolismo , Propionatos/farmacología , Sulfuros/farmacología , Animales , Hígado Graso/metabolismo , Masculino , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Enfermedad del Hígado Graso no Alcohólico/metabolismo
13.
Lipids Health Dis ; 15: 38, 2016 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-26920731

RESUMEN

BACKGROUND: Trans fatty acids (TFAs) have been found to impair flow mediated vasodilation and nitric oxide (NO) production. We sought to examine if serum TFA levels are associated with plasma levels of the NO inhibitor asymmetric dimethylarginine (ADMA) and if possible relationships between serum TFA and cardiovascular morbidity or mortality are mediated or modified by plasma ADMA levels. METHODS: The cohort included patients who underwent coronary angiography for suspected coronary heart disease in 2000-2001. Serum trans 16:1n7 and trans 18:1 isomers were determined by gas liquid chromatography and the summation of these two TFAs is reported as TFA (percentage by weight (wt%) or concentration). Associations between TFAs and ADMA were estimated by calculating the Spearman's rank correlation coefficient (ρ), and risk associations with AMI, cardiovascular death and all-cause mortality across quartiles of TFAs (wt% or concentration) were explored by Cox modeling. RESULTS: A total of 1364 patients (75 % men) with median (25(th),75(th) percentile) age 61 (54, 69) years, serum TFA 0.46 (0.36, 0.56) wt% and plasma ADMA 0.59 (0.50, 0.70) µmol/L were studied. Serum TFA levels (ρ = 0.21, p < 0.001), trans 16:1n7 (ρ = 0.22, p < 0.001) and trans 18:1 (ρ = 0.20, p < 0.001) levels were significantly correlated with plasma ADMA levels. During the median (25(th),75(th) percentile) follow-up time of 5.8 (4.5, 6.4) years, 129 (9.5 %) patients experienced an AMI, 124 (9.1 %) died, whereof 66 (53 %) due to cardiovascular causes. After multivariate adjustments no significant associations between serum TFA levels (wt% or concentration) and incident AMI, CV death and all-cause mortality were observed. Similar results were obtained when repeating the analyses with trans 16:1n7 and trans 18:1 individually. Plasma ADMA levels did not significantly modify the associations between TFA levels and outcomes. CONCLUSIONS: Serum TFA levels were positively correlated with plasma ADMA levels. After multivariate adjustments, TFAs were not associated with incident AMI or mortality, and associations were not influenced by ADMA. TRIAL REGISTRATION: Clinicaltrials.gov Identifier: NCT00354081.


Asunto(s)
Arginina/análogos & derivados , Enfermedad de la Arteria Coronaria/sangre , Enfermedad de la Arteria Coronaria/mortalidad , Infarto del Miocardio/sangre , Infarto del Miocardio/mortalidad , Ácidos Grasos trans/sangre , Anciano , Arginina/sangre , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos
14.
Lipids Health Dis ; 14: 163, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26666303

RESUMEN

BACKGROUND: Lipid abnormalities, enhanced inflammation and oxidative stress seem to represent a vicious circle in atherogenesis, and therapeutic options directed against these processes seems like a reasonable approach in the management of atherosclerotic disorders. Krill oil (RIMFROST Sublime®) is a phospholipid-rich oil with eicosapentaenoic acid (EPA): docosahexaenoic acid (DHA) ratio of 1.8:1. In this pilot study we determined if krill oil could favourable affect plasma lipid parameters and parameters involved in the initiation and progression of atherosclerosis. METHODS: The study was conducted as a 28 days intervention study examining effect-parameters of dietary supplementation with krill oil (832.5 mg EPA and DHA per day). 17 healthy volunteers in the age group 18-36 (mean age 23 ± 4 years) participated. Plasma lipids, lipoprotein particle sizes, fatty acid composition in plasma and red blood cells (RBCs), plasma cytokines, antioxidant capacity, acylcarntines, carnitine, choline, betaine, and trimethylamine-N-oxide (TMAO) were measured before and after supplementation. RESULTS: Plasma triacylglycerol (TAG) and large very-low density lipoprotein (VLDL) & chylomicron particle concentrations decreased after 28 days of krill oil intake. A significant reduction in the TAG/HDL cholesterol resulted. Krill oil supplementation decreased n-6/n-3 polyunsaturated fatty acids (PUFA) ratio both in plasma and RBCs. This was due to increased EPA, DHA and docosapentaenoic acid (DPA) and reduced amount of arachidonic acid (AA). The increase of n-3 fatty acids and wt % of EPA and DHA in RBC was of smaller magnitude than found in plasma. Krill oil intake increased the antioxidant capacity, double bond index (DBI) and the fatty acid anti-inflammatory index. The plasma atherogenicity index remained constant whereas the thrombogenicity index decreased. Plasma choline, betaine and the carnitine precursor, γ-butyrobetaine were increased after krill oil supplementation whereas the TMAO and carnitine concentrations remained unchanged. CONCLUSION: Krill oil consumption is considered health beneficial as it decreases cardiovascular disease risk parameters through effects on plasma TAGs, lipoprotein particles, fatty acid profile, redox status and possible inflammation. Noteworthy, no adverse effects on plasma levels of TMAO and carnitine were found.


Asunto(s)
Grasas Insaturadas en la Dieta/sangre , Ácidos Docosahexaenoicos/sangre , Ácido Eicosapentaenoico/sangre , Euphausiacea/química , Ácidos Grasos Insaturados/sangre , Adolescente , Adulto , Animales , Aterosclerosis/sangre , Aterosclerosis/prevención & control , Betaína/sangre , Carnitina/análogos & derivados , Carnitina/sangre , Colina/sangre , Quilomicrones/sangre , Citocinas/sangre , Grasas Insaturadas en la Dieta/administración & dosificación , Ácidos Docosahexaenoicos/administración & dosificación , Ácido Eicosapentaenoico/administración & dosificación , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Ácidos Grasos Insaturados/administración & dosificación , Femenino , Humanos , Lipoproteínas VLDL/sangre , Masculino , Metilaminas/sangre , Tamaño de la Partícula , Proyectos Piloto , Triglicéridos/sangre
15.
J Card Fail ; 21(11): 916-23, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26231517

RESUMEN

BACKGROUND: Adipose tissue has endocrine properties, secreting a wide range of mediators into the circulation, including factors involved in cardiovascular disease. However, little is known about the potential role of adipose tissue in heart failure (HF), and the aim of this study was to investigate epicardial (EAT) and subcutaneous (SAT) adipose tissue in HF patients. METHODS AND RESULTS: Thirty patients with systolic HF and 30 patients with normal systolic function undergoing thoracic surgery were included in the study. Plasma was sampled and examined with the use of enzyme-linked immunosorbent assays, whereas SAT and EAT biopsies were collected and examined by means of reverse-transcription polymerase chain reaction and gas chromatography. Significantly higher expressions of mRNA encoding interleukin-6, adrenomedullin, peroxisome proliferator-activated receptor α, and fatty acid (FA)-binding protein 3, as well as higher levels of monounsaturated FA and palmitoleic acid, were seen in the EAT of HF patients, whereas the levels of docosahexaenoic acid were lower. Palmitoleic acid levels in EAT were correlated with 2 parameters of cardiac remodeling: increasing left ventricular end-diastolic diameter and N-terminal pro-B-type natriuretic peptide. CONCLUSIONS: Our results demonstrate adipose tissue depot-specific alterations of synthesis of FA and inflammatory and metabolic mediators in systolic HF patients. EAT may be a source of increased circulatory and myocardial levels of these mediators through endocrine actions.


Asunto(s)
Proteína C-Reactiva/metabolismo , Ácidos Grasos/metabolismo , Insuficiencia Cardíaca Sistólica/metabolismo , Péptido Natriurético Encefálico/sangre , Fragmentos de Péptidos/sangre , Tejido Adiposo/metabolismo , Adulto , Anciano , Biomarcadores/análisis , Procedimientos Quirúrgicos Cardíacos/métodos , Estudios de Casos y Controles , Distribución de Chi-Cuadrado , Procedimientos Quirúrgicos Electivos , Ensayo de Inmunoadsorción Enzimática , Femenino , Insuficiencia Cardíaca Sistólica/diagnóstico por imagen , Insuficiencia Cardíaca Sistólica/cirugía , Humanos , Modelos Lineales , Masculino , Persona de Mediana Edad , Pericardio/metabolismo , ARN Mensajero/análisis , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Estadísticas no Paramétricas , Grasa Subcutánea/metabolismo , Ultrasonografía
16.
Lipids Health Dis ; 14: 88, 2015 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-26260413

RESUMEN

BACKGROUND: Marine food is an important source of omega-3 fatty acids with beneficial health effects. Oils from marine organisms have different fatty acid composition and differ in their molecular composition. Fish oil (FO) has a high content of eicosapentaenoic and docosahexaenoic acids mainly esterified to triacylglycerols, while in krill oil (KO) these fatty acids are mainly esterified to phospholipids. The aim was to study the effects of these oils on the lipid content and fatty acid distribution in the various lipid classes in liver and brain of mice. METHODS: Mice were fed either a high-fat diet (HF), a HF diet supplemented with FO or with KO (n = 6). After six weeks of feeding, liver and brain lipid extracts were analysed using a shotgun and TAG lipidomics approach. Student t-test was performed after log-transformation to compare differences between study groups. RESULTS: Six weeks of feeding resulted in significant changes in the relative abundance of many lipid classes compared to control mice. In both FO and KO fed mice, the triacylglycerol content in the liver was more than doubled. The fatty acid distribution was affected by the oils in both liver and brain with a decrease in the abundance of 18:2 and 20:4, and an increase in 20:5 and 22:6 in both study groups. 18:2 decreased in all lipid classes in the FO group but with only minor changes in the KO group. Differences between the feeding groups were particularly evident in some of the minor lipid classes that are associated with inflammation and insulin resistance. Ceramides and diacylglycerols were decreased and cholesteryl esters increased in the liver of the KO group, while plasmalogens were decreased in the FO group. In the brain, diacylglycerols were decreased, more by KO than FO, while ceramides and lactosylceramides were increased, more by FO than KO. CONCLUSION: The changes in the hepatic sphingolipids and 20:4 fatty acid levels were greater in the KO compared to the FO fed mice, and are consistent with a hypothesis that krill oil will have a stronger anti-inflammatory action and enhances insulin sensitivity more potently than fish oil.


Asunto(s)
Encéfalo/metabolismo , Euphausiacea/química , Conducta Alimentaria , Aceites de Pescado/farmacología , Lípidos/química , Hígado/metabolismo , Metaboloma/efectos de los fármacos , Animales , Peso Corporal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Ácidos Grasos/metabolismo , Hígado/efectos de los fármacos , Ratones
17.
Mar Drugs ; 13(7): 4375-97, 2015 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-26193284

RESUMEN

Dietary intake of marine omega-3 polyunsaturated fatty acids (n-3 PUFAs) can change the plasma profile from atherogenic to cardioprotective. In addition, there is growing evidence that proteins of marine origin may have health benefits. We investigated a phospholipid-protein complex (PPC) from krill that is hypothesized to influence lipid metabolism, inflammation, and redox status. Male Wistar rats were fed a control diet (2% soy oil, 8% lard, 20% casein), or diets where corresponding amounts of casein and lard were replaced with PPC at 3%, 6%, or 11% (wt %), for four weeks. Dietary supplementation with PPC resulted in significantly lower levels of plasma triacylglycerols in the 11% PPC-fed group, probably due to reduced hepatic lipogenesis. Plasma cholesterol levels were also reduced at the highest dose of PPC. In addition, the plasma and liver content of n-3 PUFAs increased while n-6 PUFAs decreased. This was associated with increased total antioxidant capacity in plasma and increased liver gene expression of mitochondrial superoxide dismutase (Sod2). Finally, a reduced plasma level of the inflammatory mediator interleukin-2 (IL-2) was detected in the PPC-fed animals. The present data show that PPC has lipid-lowering effects in rats, and may modulate risk factors related to cardiovascular disease progression.


Asunto(s)
Antioxidantes/aislamiento & purificación , Proteínas en la Dieta/farmacología , Euphausiacea/química , Hipolipemiantes/aislamiento & purificación , Factores Inmunológicos/aislamiento & purificación , Lipogénesis/efectos de los fármacos , Hígado/efectos de los fármacos , Fosfolípidos/farmacología , Triglicéridos/sangre , Animales , Antioxidantes/farmacología , Proteínas en la Dieta/aislamiento & purificación , Hipolipemiantes/farmacología , Factores Inmunológicos/farmacología , Masculino , Fosfolípidos/aislamiento & purificación , Ratas , Ratas Wistar
18.
PLoS One ; 10(6): e0129049, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26039046

RESUMEN

The long-chain polyunsaturated fatty acids are considered to be of major health importance, and recent studies indicate that their endogenous metabolism is influenced by B-vitamin status and smoking habits. We investigated the associations of circulating B-vitamins and smoking habits with serum polyunsaturated fatty acids among 1,366 patients who underwent coronary angiography due to suspected coronary heart disease at Haukeland University Hospital, Norway. Of these, 52% provided information on dietary habits by a food frequency questionnaire. Associations were assessed using partial correlation (Spearman's rho). In the total population, the concentrations of most circulating B-vitamins were positively associated with serum n-3 polyunsaturated fatty acids, but negatively with serum n-6 polyunsaturated fatty acids. However, the associations between B-vitamins and polyunsaturated fatty acids tended to be weaker in smokers. This could not be solely explained by differences in dietary intake. Furthermore, plasma cotinine, a marker of recent nicotine exposure, showed a negative relationship with serum n-3 polyunsaturated fatty acids, but a positive relationship with serum n-6 polyunsaturated fatty acids. In conclusion, circulating B-vitamins are, in contrast to plasma cotinine, generally positively associated with serum n-3 polyunsaturated fatty acids and negatively with serum n-6 polyunsaturated fatty acids in patients with suspected coronary heart disease. Further studies should investigate whether B-vitamin status and smoking habits may modify the clinical effects of polyunsaturated fatty acid intake.


Asunto(s)
Enfermedad Coronaria/sangre , Ácidos Grasos Omega-3/sangre , Ácidos Grasos Omega-6/sangre , Fumar/sangre , Complejo Vitamínico B/administración & dosificación , Anciano , Angiografía Coronaria , Enfermedad Coronaria/diagnóstico , Enfermedad Coronaria/diagnóstico por imagen , Enfermedad Coronaria/patología , Vasos Coronarios/diagnóstico por imagen , Vasos Coronarios/metabolismo , Vasos Coronarios/patología , Cotinina/sangre , Estudios Transversales , Grasas de la Dieta/administración & dosificación , Conducta Alimentaria/psicología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Análisis de Regresión , Encuestas y Cuestionarios
19.
Eur J Nutr ; 54(2): 193-204, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24756472

RESUMEN

BACKGROUND: Amount and type of dietary protein have been shown to influence blood lipids. The present study aimed to evaluate the effects of a water-soluble fraction of chicken protein (CP) on plasma and hepatic lipid metabolism in normolipidemic rats. METHODS: Male Wistar rats were fed either a control diet with 20 % w/w casein as the protein source, or an experimental diet where casein was replaced with CP at 6, 14, or 20 % w/w for 4 weeks. RESULTS: Rats fed CP had markedly reduced levels of triacylglycerols (TAG) and cholesterol in both plasma and liver, accompanied by stimulated hepatic mitochondrial fatty acid oxidation and carnitine palmitoyltransferase 2 activity in the 20 % CP group compared to the control group. In addition, reduced activities and gene expression of hepatic enzymes involved in lipogenesis were observed. The gene expression of sterol regulatory element-binding transcription factor 1 was reduced in the 20 % CP-fed rats, whereas gene expression of peroxisome proliferator-activated receptor alpha was increased. Moreover, 6, 14, and 20 % CP-fed rats had significantly increased free carnitine and acylcarnitine plasma levels compared to control rats. The plasma methionine/glycine and lysine/arginine ratios were reduced in 20 % CP-treated rats. The mRNA level of ATP-binding cassette 4 was increased in the 20 % CP group, accompanied by the increased level of plasma bile acids. CONCLUSIONS: The present data suggest that the hypotriglyceridemic property of a water-soluble fraction of CP is primarily due to effects on TAG synthesis and mitochondrial fatty acid oxidation. The cholesterol-lowering effect by CP may be linked to increased bile acid formation.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Pollos , Proteínas en la Dieta/uso terapéutico , Suplementos Dietéticos , Hipolipemiantes/uso terapéutico , Metabolismo de los Lípidos , Hígado/metabolismo , Aminoácidos/análisis , Animales , Carnitina O-Palmitoiltransferasa/metabolismo , Caseínas/administración & dosificación , Colesterol/sangre , Colesterol/metabolismo , Proteínas en la Dieta/administración & dosificación , Proteínas en la Dieta/química , Suplementos Dietéticos/análisis , Regulación Enzimológica de la Expresión Génica , Hiperlipidemias/sangre , Hiperlipidemias/metabolismo , Hiperlipidemias/prevención & control , Hipolipemiantes/administración & dosificación , Hipolipemiantes/química , Hígado/enzimología , Masculino , Productos de la Carne/análisis , Mitocondrias Hepáticas/enzimología , Mitocondrias Hepáticas/metabolismo , Distribución Aleatoria , Ratas Sprague-Dawley , Solubilidad , Triglicéridos/sangre , Triglicéridos/metabolismo
20.
Lipids Health Dis ; 13: 82, 2014 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-24886291

RESUMEN

BACKGROUND: Herring roe is an underutilized source of n-3 polyunsaturated fatty acids (PUFAs) for human consumption with high phospholipid (PL) content. Studies have shown that PL may improve bioavailability of n-3 PUFAs. Arctic Nutrition's herring roe product MOPL™30 is a PL: docosahexaenoic acid (DHA)-rich fish oil mixture, with a DHA:eicosapentaenoic acid (EPA) ratio of about 3:1, which is also rich in choline. In this pilot study, we determined if MOPL30 could favorably affect plasma lipid parameters and glucose tolerance in healthy young adults. METHODS: Twenty female and one male adults, between 22 and 26 years of age, participated in the study. Participants took encapsulated MOPL30, 2.4 g/d EPA + DHA, for 14 days, and completed a three-day weighed food record before and during the capsule intake. Plasma lipids and their fatty acid (FA) composition, plasma and red blood cell (RBC) phosphatidylcholine (PC) FA composition, acylcarnitines, choline, betaine and insulin were measured before and after supplementation (n = 21), and one and four weeks after discontinuation of supplementation (n = 14). An oral glucose tolerance test was performed before and after supplementation. RESULTS: Fasting plasma triacylglycerol and non-esterified fatty acids decreased and HDL-cholesterol increased after 14 days of MOPL30 intake (p < 0.05). The dietary records showed that PUFA intake prior to and during capsule intake was not different. Fasting plasma glucose was unchanged from before to after supplementation. However, during oral glucose tolerance testing, blood glucose at both 10 and 120 min was significantly lower after supplementation with MOPL30 compared to baseline measurements. Plasma free choline and betaine were increased, and the n-6/n-3 polyunsaturated (PUFA) ratio in plasma and RBC PC were decreased post-supplementation. Four weeks after discontinuation of MOPL30, most parameters had returned to baseline, but a delayed effect was observed on n-6 PUFAs. CONCLUSIONS: Herring roe rich in PL improved the plasma lipid profile and glycemic control in young adults with an overall healthy lifestyle.


Asunto(s)
Aceites de Pescado/administración & dosificación , Glucosa/metabolismo , Fosfolípidos/administración & dosificación , Adulto , Animales , Suplementos Dietéticos , Ácidos Docosahexaenoicos/administración & dosificación , Ácido Eicosapentaenoico/administración & dosificación , Femenino , Peces , Prueba de Tolerancia a la Glucosa , Humanos , Masculino , Triglicéridos/sangre , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...