Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cell ; 84(3): 584-595.e6, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38244546

RESUMEN

The most abundant N6-methyladenosine (m6A) modification on mRNAs is installed non-stoichiometrically across transcripts, with 5' untranslated regions (5' UTRs) being the least conductive. 5' UTRs are essential for translation initiation, yet the molecular mechanisms orchestrated by m6A remain poorly understood. Here, we combined structural, biochemical, and single-molecule approaches and show that at the most common position, a single m6A does not affect translation yields, the kinetics of translation initiation complex assembly, or start codon recognition both under permissive growth and following exposure to oxidative stress. Cryoelectron microscopy (cryo-EM) structures of the late preinitiation complex reveal that m6A purine ring established stacking interactions with an arginine side chain of the initiation factor eIF2α, although with only a marginal energy contribution, as estimated computationally. These findings provide molecular insights into m6A interactions with the initiation complex and suggest that the subtle stabilization is unlikely to affect the translation dynamics under homeostatic conditions or stress.


Asunto(s)
Adenosina/análogos & derivados , Iniciación de la Cadena Peptídica Traduccional , Biosíntesis de Proteínas , Regiones no Traducidas 5' , Microscopía por Crioelectrón , ARN Mensajero/genética , ARN Mensajero/metabolismo , Codón Iniciador/genética
2.
Nucleic Acids Res ; 51(1): e4, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36271796

RESUMEN

Type I toxin-antitoxin systems (T1TAs) are extremely potent bacterial killing systems difficult to characterize using classical approaches. To assess the killing capability of type I toxins and to identify mutations suppressing the toxin expression or activity, we previously developed the FASTBAC-Seq (Functional AnalysiS of Toxin-Antitoxin Systems in BACteria by Deep Sequencing) method in Helicobacter pylori. This method combines a life and death selection with deep sequencing. Here, we adapted and improved our method to investigate T1TAs in the model organism Escherichia coli. As a proof of concept, we revisited the regulation of the plasmidic hok/Sok T1TA system. We revealed the death-inducing phenotype of the Hok toxin when it is expressed from the chromosome in the absence of the antitoxin and recovered previously described intragenic toxicity determinants of this system. We identified nucleotides that are essential for the transcription, translation or activity of Hok. We also discovered single-nucleotide substitutions leading to structural changes affecting either the translation or the stability of the hok mRNA. Overall, we provide the community with an easy-to-use approach to widely characterize TA systems from diverse types and bacteria.


Asunto(s)
Toxinas Bacterianas , Secuenciación de Nucleótidos de Alto Rendimiento , Sistemas Toxina-Antitoxina , Bacterias/química , Bacterias/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/toxicidad , Toxinas Bacterianas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , ARN Bacteriano/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
3.
Nucleic Acids Res ; 47(19): 10313-10326, 2019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31529052

RESUMEN

In Eukaryotes, tRNAs, 5S RNA and U6 RNA are transcribed by RNA polymerase (Pol) III. Human Pol III is composed of 17 subunits. Three specific Pol III subunits form a stable ternary subcomplex (RPC62-RPC39-RPC32α/ß) being involved in pre-initiation complex formation. No paralogues for subunits of this subcomplex subunits have been found in Pols I or II, but hRPC62 was shown to be structurally related to the general Pol II transcription factor hTFIIEα. Here we show that these structural homologies extend to functional similarities. hRPC62 as well as hTFIIEα possess intrinsic ATP-dependent 3'-5' DNA unwinding activity. The ATPase activities of both proteins are stimulated by single-stranded DNA. Moreover, the eWH domain of hTFIIEα can replace the first eWH (eWH1) domain of hRPC62 in ATPase and DNA unwinding assays. Our results identify intrinsic enzymatic activities in hRPC62 and hTFIIEα.


Asunto(s)
ARN Polimerasa III/química , Factores de Transcripción TFII/genética , Transcripción Genética , Adenosina Trifosfato , ADN Helicasas/química , ADN Helicasas/genética , Humanos , Subunidades de Proteína/química , Subunidades de Proteína/genética , ARN Polimerasa III/genética , Factores de Transcripción TFII/química
4.
Sci Rep ; 7(1): 3169, 2017 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-28600509

RESUMEN

The SSU processome constitutes a large ribonucleoprotein complex involved in the early steps of ribosome biogenesis. UTP-B is one of the first multi-subunit protein complexes that associates with the pre-ribosomal RNA to form the SSU processome. To understand the molecular basis of the hierarchical assembly of the SSU-processome, we have undergone a structural and functional analysis of the UTP-B subunit Pwp2p. We show that Pwp2p is required for the proper assembly of UTP-B and for a productive association of UTP-B with pre-rRNA. These two functions are mediated by two distinct structural domains. The N-terminal domain of Pwp2p folds into a tandem WD-repeat (tWD) that associates with Utp21p, Utp18p, and Utp6p to form a core complex. The CTDs of Pwp2p and Utp21p mediate the assembly of the heterodimer Utp12p:Utp13p that is required for the stable incorporation of the UTP-B complex in the SSU processome. Finally, we provide evidence suggesting a role of UTP-B as a platform for the binding of assembly factors during the maturation of 20S rRNA precursors.


Asunto(s)
Regulación Fúngica de la Expresión Génica , ARN Ribosómico/genética , Proteínas Ribosómicas/química , Ribosomas/genética , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Sitios de Unión , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Biogénesis de Organelos , Fosforilación , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Precursores del ARN/genética , Precursores del ARN/metabolismo , ARN Ribosómico/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
J Struct Biol ; 192(3): 313-319, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26394183

RESUMEN

Transcription initiation by eukaryotic RNA polymerase (Pol) III relies on the subcomplex RPC62/RPC39/RPC32. Two distinct isoforms of RPC32 are encoded in the human genome. RPC32α expression is highly regulated and found only in stem cells and transformed cells, whereas RPC32ß is ubiquitously expressed in tissues. Here we identify a core-interacting domain of RPC32 sufficient for the interaction with RPC62. We present the crystal structure of a complex of RPC62 and the RPC32ß core domain. RPC32ß associates with the extended winged helix 1 and 2 and the coiled coil domain of RPC62 qualifying RPC32 as a molecular bridge in between RPC62 domains. The RPC62-RPC32 complex fit into EM data suggests a bi-functional role for RPC32 through interactions with the largest Pol III subunit and through solvent exposed residues. RPC32 positioning into Pol III suggests that subunit-specific contacts at the surface of the Pol III holoenzyme are critical for its function.


Asunto(s)
Regulación de la Expresión Génica/genética , ARN Polimerasa III/ultraestructura , Iniciación de la Transcripción Genética/fisiología , Secuencia de Aminoácidos , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Complejos Multiproteicos/ultraestructura , Isoformas de Proteínas/genética , Isoformas de Proteínas/ultraestructura , Estructura Terciaria de Proteína , Subunidades de Proteína , ARN Polimerasa III/genética
6.
PLoS One ; 8(9): e76380, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24086735

RESUMEN

During the Leishmania life cycle, the flagellum undergoes successive assembly and disassembly of hundreds of proteins. Understanding these processes necessitates the study of individual components. Here, we investigated LdFlabarin, an uncharacterized L. donovani flagellar protein. The gene is conserved within the Leishmania genus and orthologous genes only exist in the Trypanosoma genus. LdFlabarin associates with the flagellar plasma membrane, extending from the base to the tip of the flagellum as a helicoidal structure. Site-directed mutagenesis, deletions and chimera constructs showed that LdFlabarin flagellar addressing necessitates three determinants: an N-terminal potential acylation site and a central BAR domain for membrane targeting and the C-terminal domain for flagellar specificity. In vitro, the protein spontaneously associates with liposomes, triggering tubule formation, which suggests a structural/morphogenetic function. LdFlabarin is the first characterized Leishmania BAR domain protein, and the first flagellum-specific BAR domain protein.


Asunto(s)
Evolución Molecular , Flagelos/genética , Leishmania/genética , Proteínas de la Membrana/genética , Filogenia , Secuencia de Bases , Biología Computacional , Flagelos/metabolismo , Flagelos/ultraestructura , Leishmania/metabolismo , Liposomas/metabolismo , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Unión Proteica , Estructura Terciaria de Proteína , Análisis de Secuencia de ADN
7.
Protein Sci ; 21(8): 1185-96, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22610485

RESUMEN

Hypoxanthine-guanine phosphoribosyltransferase (HGPRT) is a key enzyme of the purine recycling pathway that catalyzes the conversion of 5-phospho-ribosyl-α-1-pyrophosphate and guanine or hypoxanthine to guanosine monophosphate (GMP) or inosine monophosphate (IMP), respectively, and pyrophosphate (PPi). We report the first crystal structure of a fungal 6-oxopurine phosphoribosyltransferase, the Saccharomyces cerevisiae HGPRT (Sc-HGPRT) in complex with GMP. The crystal structures of full length protein with (WT1) or without (WT2) sulfate that mimics the phosphate group in the PPi binding site were solved by molecular replacement using the structure of a truncated version (Δ7) solved beforehand by multiwavelength anomalous diffusion. Sc-HGPRT is a dimer and adopts the overall structure of class I phosphoribosyltransferases (PRTs) with a smaller hood domain and a short two-stranded parallel ß-sheet linking the N- to the C-terminal end. The catalytic loops in WT1 and WT2 are in an open form while in Δ7, due to an inter-subunit disulfide bridge, the catalytic loop is in either an open or closed form. The closure is concomitant with a peptide plane flipping in the PPi binding loop. Moreover, owing the flexibility of a GGGG motif conserved in fungi, all the peptide bonds of the phosphate binding loop are in trans conformation whereas in nonfungal 6-oxopurine PRTs, one cis-peptide bond is required for phosphate binding. Mutations affecting the enzyme activity or the previously characterized feedback inhibition by GMP are located at the nucleotide binding site and the dimer interface.


Asunto(s)
Glicina/química , Guanosina Monofosfato/metabolismo , Hipoxantina Fosforribosiltransferasa/química , Hipoxantina Fosforribosiltransferasa/metabolismo , Saccharomyces cerevisiae/enzimología , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Glicina/metabolismo , Modelos Moleculares , Conformación Proteica , Multimerización de Proteína , Purinonas/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo
8.
Proteins ; 80(6): 1658-68, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22467275

RESUMEN

The nucleoside diphosphate kinase (Ndk) catalyzes the reversible transfer of the γ-phosphate from nucleoside triphosphate to nucleoside diphosphate. Ndks form hexamers or two types of tetramers made of the same building block, namely, the common dimer. The secondary interfaces of the Type I tetramer found in Myxococcus xanthus Ndk and of the Type II found in Escherichia coli Ndk involve the opposite sides of subunits. Up to now, the few available structures of Ndk from thermophiles were hexameric. Here, we determined the X-ray structures of four crystal forms of the Ndk from the hyperthermophilic bacterium Aquifex aeolicus (Aa-Ndk). Aa-Ndk displays numerous features of thermostable proteins and is made of the common dimer but it is a tetramer of Type I. Indeed, the insertion of three residues in a surface-exposed spiral loop, named the Kpn-loop, leads to the formation of a two-turn α-helix that prevents both hexamer and Type II tetramer assembly. Moreover, the side chain of the cysteine at position 133, which is not present in other Ndk sequences, adopts two alternate conformations. Through the secondary interface, each one forms a disulfide bridge with the equivalent Cys133 from the neighboring subunit. This disulfide bridge was progressively broken during X-ray data collection by radiation damage. Such crosslinks counterbalance the weakness of the common-dimer interface. A 40% decrease of the kinase activity at 60°C after reduction and alkylation of the protein corroborates the structural relevance of the disulfide bridge on the tetramer assembly and enzymatic function.


Asunto(s)
Bacterias/enzimología , Proteínas Bacterianas/química , Disulfuros/química , Nucleósido-Difosfato Quinasa/química , Secuencia de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , Disulfuros/efectos de la radiación , Estabilidad de Enzimas/efectos de la radiación , Calor , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Subunidades de Proteína/química , Alineación de Secuencia , Sulfatos , Rayos X
9.
J Biol Chem ; 284(29): 19321-30, 2009 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-19439410

RESUMEN

S-Adenosylmethionine-dependent methyltransferases (AdoMet-MTs) constitute a large family of enzymes specifically transferring a methyl group to a range of biologically active molecules. Mycobacterium tuberculosis produces a set of paralogous AdoMet-MTs responsible for introducing key chemical modifications at defined positions of mycolic acids, which are essential and specific components of the mycobacterial cell envelope. We investigated the inhibition of these mycolic acid methyltransferases (MA-MTs) by structural analogs of the AdoMet cofactor. We found that S-adenosyl-N-decyl-aminoethyl, a molecule in which the amino acid moiety of AdoMet is substituted by a lipid chain, inhibited MA-MTs from Mycobacterium smegmatis and M. tuberculosis strains, both in vitro and in vivo, with IC(50) values in the submicromolar range. By contrast, S-adenosylhomocysteine, the demethylated reaction product, and sinefungin, a general AdoMet-MT inhibitor, did not inhibit MA-MTs. The interaction between Hma (MmaA4), which is strictly required for the biosynthesis of oxygenated mycolic acids in M. tuberculosis, and the three cofactor analogs was investigated by x-ray crystallography. The high resolution crystal structures obtained illustrate the bisubstrate nature of S-adenosyl-N-decyl-aminoethyl and provide insight into its mode of action in the inhibition of MA-MTs. This study has potential implications for the design of new drugs effective against multidrug-resistant and persistent tubercle bacilli.


Asunto(s)
Adenosina/análogos & derivados , Inhibidores Enzimáticos/farmacología , Metiltransferasas/antagonistas & inhibidores , Mycobacterium tuberculosis/enzimología , Ácidos Micólicos/metabolismo , Adenosina/química , Adenosina/farmacología , Dominio Catalítico , División Celular/efectos de los fármacos , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Metiltransferasas/química , Metiltransferasas/metabolismo , Modelos Moleculares , Estructura Molecular , Mycobacterium/enzimología , Mycobacterium/metabolismo , Mycobacterium tuberculosis/citología , Mycobacterium tuberculosis/metabolismo , Ácidos Micólicos/química , Unión Proteica , Estructura Terciaria de Proteína , S-Adenosilhomocisteína/química , S-Adenosilhomocisteína/farmacología , S-Adenosilmetionina/química , S-Adenosilmetionina/farmacología , Especificidad de la Especie
10.
J Biol Chem ; 281(7): 4434-45, 2006 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-16356931

RESUMEN

Mycolic acids are major and specific components of the cell envelope of Mycobacteria that include Mycobacterium tuberculosis, the causative agent of tuberculosis. Their metabolism is the target of the most efficient antitubercular drug currently used in therapy, and the enzymes that are involved in the production of mycolic acids represent important targets for the development of new drugs effective against multidrug-resistant strains. Among these are the S-adenosylmethionine-dependent methyltransferases (SAM-MTs) that catalyze the introduction of key chemical modifications in defined positions of mycolic acids. Some of these subtle structural variations are known to be crucial for both the virulence of the tubercle bacillus and the permeability of the mycobacterial cell envelope. We report here the structural characterization of the enzyme Hma (MmaA4), a SAM-MT that is unique in catalyzing the introduction of a methyl branch together with an adjacent hydroxyl group essential for the formation of both keto- and methoxymycolates in M. tuberculosis. Despite the high propensity of Hma to proteolytic degradation, the enzyme was produced and crystallized, and its three-dimensional structure in the apoform and in complex with S-adenosylmethionine was solved to about 2 A. Thestructuresshowtheimportantroleplayedbythemodificationsfound within mycolic acid SAM-MTs, especially thealpha2-alpha3 motif and the chemical environment of the active site. Essential information with respect to cofactor and substrate binding, selectivity and specificity, and about the mechanism of catalytic reaction were derived.


Asunto(s)
Proteínas Bacterianas/química , Metiltransferasas/química , Oxigenasas de Función Mixta/química , Mycobacterium tuberculosis/enzimología , Ácidos Micólicos/metabolismo , S-Adenosilmetionina/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Cristalización , Datos de Secuencia Molecular , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...